

#### T. Y. B. Tech. **Robotics and Automation (Pattern 2022)** Semester: V Course Code:223001:Name of Subject: Control System Engineering **Teaching Scheme: Credit Scheme: Examination Scheme:** Theory:03hrs/week 03 **Continuous Comprehensive Evaluation: 20Marks** In Sem Exam: 20 Marks End Sem Exam:60Marks Prerequisite Courses: - Mathematics, Fundamentals of Electronics Engineering, Fundamentals of Electrical Engineering Course Objectives: The course aims to: 1. To understand basic concepts of the classical control theory. 2. To model physical systems mathematically. 3. To analyze behavior of system in time and frequency domain. 4. To design controller to meet desired specifications. Course Outcomes: On completion of the course, students will be able to-**Course Outcomes Bloom's Level** Express physical system and its internal dynamics and input-output **CO1** 3-Apply relationships by means of block diagrams, mathematical model and transfer functions. Explain the relationships between the parameters of a control system **CO2** 3-Apply and its stability, accuracy, transient behaviour. **CO3** Identify the parameters that the system is sensitive to. Determine the 3-Apply stability of a system and parameter ranges for a desired degree of stability. Plot the Bode, Nyquist, Root Locus diagrams for a given control system **CO4** 3- Apply and identify the parameters and carry out the stability analysis. 4-Analyze **CO5** Determine the frequency response of a control system and use it to evaluate or adjust the relative stability. Explain the role of feedback loops in maintaining stability, accuracy, **CO6** 3-Apply and robustness in robotic systems. **COURSE CONTENTS** Unit I (07hrs) **COs Mapped** -CO1, CO2 **UNIT: 1Basics of Control System** Control system fundamentals, classification of control systems, types of control system: feedback,

tracking, regulator system, feed forward system, transfer function, concept of pole and zero, modeling of Electrical and Mechanical systems (Only series linear and rotary motion) using differential equations and transfer function, analogy between electrical and mechanical systems, block diagram algebra, signal flow graph, Mason's gain formula.

| Unit II                                                      | Time domain analysis                                                                                                                                                                                  |                                                                                                         | (                                                             | 07hrs)                                                                 |                                            | COs Ma<br>-CO2, C                                        | pped<br>CO3                              |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------------|
| Concept<br>signal, ty<br>unit stej<br>specifica<br>error coe | of transient and steady state responsive<br>ope and order of control system, time<br>o input, time domain specification<br>tions for second-order under-dampe<br>officients, number-PID control-Analy | se, standard test s<br>response of first<br>s of second ord<br>ed system for uni<br>tical design for Pl | ignals: s<br>and seco<br>ler syste<br>it step in<br>D, PI,PII | tep, ramp,<br>nd order sy<br>ms, deriva<br>put, steady<br>O control sy | parat<br>/stem<br>tion<br>/ state<br>/stem | polic and<br>as to unit i<br>of time<br>e error ar<br>as | impulse<br>mpulse<br>domain<br>nd static |
| Unit<br>III                                                  | Stability analysis and Ro                                                                                                                                                                             | ot Locus                                                                                                | (                                                             | 06hrs)                                                                 |                                            | Cos Maj<br>CO3<br>CO4                                    | oped<br>,                                |
| Concept<br>Hurwitz<br>Construc                               | of stability: BIBO, nature of system<br>criterion. Root Locus: Angle and<br>ction of root locus, Stability analysis                                                                                   | response for vario<br>d magnitude cor<br>using root locus                                               | ous location,                                                 | ons of pole<br>Basic prop                                              | es in<br>pertie                            | S-plane. I<br>s of roo                                   | Routh's<br>t locus                       |
| Unit<br>IV                                                   | Frequency domain an                                                                                                                                                                                   | alysis                                                                                                  | (                                                             | 07hrs)                                                                 |                                            | COs Ma<br>–CO4, C                                        | pped<br>CO5                              |
| Introduc<br>specifica<br>sketchin                            | tion, Frequency domain specificat<br>tions, polar Plot, Nyquist plot, stabi<br>g of Bode plot, stability analysis usin                                                                                | ions, correlation<br>lity analysis using<br>g Bode plot.                                                | betwee<br>g Nyquis                                            | n time an<br>t plot, Intro                                             | nd fr<br>oduct                             | equency<br>ion to Bo                                     | domair<br>de plot                        |
| Unit V                                                       | Feedback Control & Advanced C<br>Techniques                                                                                                                                                           | Control                                                                                                 | (07hrs)                                                       |                                                                        |                                            | COs Mapped<br>-CO6                                       |                                          |
| Introduc<br>control,<br>Model p                              | Vision Based Control, Advanced redictive control (MPC)                                                                                                                                                | Control Techni                                                                                          | e.g., Lya<br>ques: A                                          | aptive co                                                              | ntrol,                                     | , Robust                                                 | control                                  |
| Unit                                                         | Contents                                                                                                                                                                                              | Taxonomy<br>Level                                                                                       | CO-<br>mapped                                                 | PO<br>mapped                                                           | PSC<br>maj                                 | )<br>pped                                                |                                          |
| 1                                                            | <b>Basics of Control System</b>                                                                                                                                                                       | 3                                                                                                       | 1,2                                                           | 1                                                                      | 1                                          |                                                          |                                          |
| 2                                                            | Time domain analysis                                                                                                                                                                                  | 3                                                                                                       | 2,3                                                           | 1,2,3                                                                  | 1                                          |                                                          |                                          |
| 3                                                            | Stability analysis and Root Locus                                                                                                                                                                     | 3                                                                                                       | 3,4                                                           | 1,2,3                                                                  | 1                                          |                                                          |                                          |
| 4                                                            | Frequency domain analysis                                                                                                                                                                             | 3,4                                                                                                     | 4,5                                                           | 1,2,3,4,5                                                              | 1                                          |                                                          | _                                        |
| 5                                                            | Application of control system in robotics                                                                                                                                                             | 3                                                                                                       | 6                                                             | 1,2,3,4,5                                                              | 1,2                                        |                                                          |                                          |
| [T1] I.J.                                                    | Nagrath, M. Gopal, "Control Syst                                                                                                                                                                      | Text Books<br>em Engineering"                                                                           | , New A                                                       | ge Interna                                                             | itiona                                     | ıl Publish                                               | ers, 6tł                                 |
| edition, 2<br>[T2] Kat<br>[T3] Nis<br>[T4] R.                | 2017.<br>suhiko Ogata, "Modern control syste<br>e N. S. "Control Systems Engineerin<br>Anandanatrajan and P. Ramesh Bab                                                                               | m engineering", I<br>g", John Wiley &<br>u, "Control Syste                                              | Prentice I<br>Sons, In<br>ms Engi                             | Hall, 2010.<br>corporated<br>neering", S                               | , 201<br>Scitec                            | 1<br>h Publica                                           | tion,3rc                                 |

[T5] C. D. Johnson, "Process Control Instrumentation Technology, 8th edition, PHI Learning Pvt. Ltd., 2013

#### **Reference Books**

[R1] B. C. Kuo, "Automatic Control System", Wiley India, 8th Edition, 2003.

[R2] Richard C Dorf and Robert H Bishop, "Modern control system", Pearson Education, 12th edition, 2011.

[R3] D. Roy Choudhary, "Modern Control Engineering", PHI Learning Pvt. Ltd., 2005.

[R4] B. Wayne Bequette, "Process Control: Modeling, Design and Simulation", PHI, 2003.

[R5] Robot Modeling and Control" by Mark W. Spong, Seth Hutchinson, and M. Vidyasagar

[R6] Feedback Control of Dynamic Systems" by Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini

|        | Guidelines for Continuous Comprehensive Evaluation of Theory Course    |                   |  |  |  |
|--------|------------------------------------------------------------------------|-------------------|--|--|--|
| Sr.No. | Components for Continuous Comprehensive Evaluation                     | Marks<br>Allotted |  |  |  |
| 1      | Tests on each unit using LMS                                           | 10                |  |  |  |
|        | (Each test for 20 M and total will be converted out of 10 M)           |                   |  |  |  |
| 2      | Timely Assignment Submission on each unit (total will be converted out | 10                |  |  |  |
|        | of 10 M)                                                               |                   |  |  |  |

| List of Assignments |                                                                                                                                                    |                         |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Sr.No.              | Title                                                                                                                                              | CO Mapped               |  |  |  |
| 1                   | Reduce the given block diagram and determine overall transfer function.                                                                            | CO1                     |  |  |  |
| 2                   | Determine transfer function of the system represented by signal flow graph using Mason's gain formula.                                             | CO2                     |  |  |  |
| 3                   | Determine time domain specifications of given second order systems.                                                                                | CO2                     |  |  |  |
| 4                   | Determine static error constants and steady state error for the given systems                                                                      | CO1,CO2                 |  |  |  |
| 5                   | Investigate closed loop stability of a given systems using Routh<br>Hurwitz stability criterion                                                    | CO1,CO2,<br>CO3,CO4     |  |  |  |
| 6                   | Sketch the root locus of a given systems and comment on stability                                                                                  | CO1,CO2,<br>CO3,CO4     |  |  |  |
| 7                   | Sketch the polar plot of given systems. 8. Sketch the Nyquist plot of a given system, determine stability margins and comment on stability         | CO1,CO2,<br>CO3         |  |  |  |
| 8                   | Sketch the Nyquist plot of a given system, determine stability margins and comment on stability                                                    | CO1,CO2,<br>CO3         |  |  |  |
| 9                   | Sketch the Bode plot of a given systems, determine stability margins and comment on stability                                                      | CO3,<br>CO4,CO5         |  |  |  |
| 10                  | Determine the tuning parameters of PID controller using open loop<br>step response and closed loop ultimate cycle methods of Ziegler and<br>Nichol | CO3,<br>CO4,CO5,CO<br>6 |  |  |  |



|                                                     | T. Y.<br>223002: Name                                                                                                                 | B. Tech. Robotics and A<br>Pattern 2022, Semester<br>of Subject: Artificial Int                   | utomation<br>r: V<br>elligence for Rol                 | botics                                                                       |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Teaching                                            | Scheme:                                                                                                                               | Credit Scheme:                                                                                    | Examination                                            | Scheme:                                                                      |
| Theory :03hrs/week                                  |                                                                                                                                       | 03                                                                                                | In Sem Exam<br>End Sem Exa<br>CCE: 20 Mar              | : 20 Marks<br>m: 60 Marks<br>ks                                              |
| Prerequis                                           | ite Courses: - Applied Mat                                                                                                            | hematics III                                                                                      |                                                        |                                                                              |
| Course Ol<br>1. Un<br>2. An<br>3. Un<br>4. Un       | bjectives:<br>derstand the algorithms sea<br>alyze the Machine Learning<br>derstand Machine vision in<br>derstand Intelligent robotic | rch in AI<br>g Algorithms<br>robotics<br>systems                                                  | he able to                                             |                                                                              |
|                                                     |                                                                                                                                       | Course Outcomes                                                                                   |                                                        | Bloom's Level                                                                |
| CO1                                                 | Select appropriate artificial intelligence method/algorithm to handle various issues in robotics                                      |                                                                                                   |                                                        | 2. Understand                                                                |
| CO2                                                 | Demonstrate various algorithms used in artificial intelligence                                                                        |                                                                                                   |                                                        | 2. Understand                                                                |
| CO3                                                 | Apply artificial intelligenc                                                                                                          | e algorithms to robotics p                                                                        | roblems                                                | 4. Apply                                                                     |
| CO4                                                 | Compare the performance                                                                                                               | of AI algorithms                                                                                  |                                                        | 5. Analyze                                                                   |
| CO5                                                 | Build solution methodolog automation                                                                                                  | gy to solve complex proble                                                                        | ems in flexible                                        | 6. Create                                                                    |
|                                                     |                                                                                                                                       | COURSE CONTENT                                                                                    | S                                                      |                                                                              |
| Unit I                                              | Search algorithms in A                                                                                                                | J                                                                                                 | (07 hrs)                                               | COs Mapped:<br>CO1, CO2                                                      |
| Algorithm:<br>breadth fir<br>Simulated              | s for uninformed and infor<br>st search, depth first searc<br>annealing, Tabu search, ant                                             | rmed search, Heuristics s<br>th, best first search, A* a<br>t colony optimization                 | earch, hill climb<br>Igorithm, D* alg                  | ing, branch and bound gorithm. Metaheuristics                                |
| Unit II                                             | Machine Learning A                                                                                                                    | (07 hrs)                                                                                          | COs Mapped:<br>CO2, CO5                                |                                                                              |
| Supervised<br>Support v<br>algorithm,<br>network, H | l and unsupervised learnin<br>ector machine, K-Means<br>Reinforcement learning, I<br>lidden Markov model, Kalr                        | g, Least square regressio<br>clustering, Principal Cor<br>Probabilistic methods for<br>nan filter | n, Logistic regre<br>nponent Analys<br>uncertain reaso | ssion, Neural networks<br>is, fuzzy logic, genetic<br>oning such as Bayesiar |

| Unit II                              | Machine vision in robotics                                                                                                                       | (07 hrs)                           | COs Mapped:<br>CO3, CO5                       |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|--|--|
| Basic prin                           | ciples of digital imaging, machine vision algorithms<br>image processing, imaging based robot guidance                                           | s, imaging base                    | ed automatic sorting and                      |  |  |
| Unit IV                              | Intelligent robotic systems                                                                                                                      | (07 hrs)                           | COs Mapped:<br>CO3, CO5                       |  |  |
| Application<br>robot Con             | ns of intelligent systems for path planning for serial<br>rol in dynamic environments, autonomous robots, obs                                    | robots, mobile<br>stacle avoidance | robot motion planning,                        |  |  |
| Unit V                               | Artificial intelligence in flexible Automation                                                                                                   | (07 hrs)                           | COs Mapped:<br>CO4, CO5                       |  |  |
| Applicatic<br>control, re<br>systems | ns of various intelligent systems for FMS functional time scheduling, tool management, process pla                                               | onal segmentat<br>Inning, route o  | tion schemes including optimization for AS/RS |  |  |
|                                      | Reference Books                                                                                                                                  |                                    |                                               |  |  |
| 1. Steg<br>App                       | er, Carsten, Markus Ulrich, Christian Wiedeman<br>ications (2nd ed.). Wiley, 2018. ISBN 978-3-527-413                                            | nn. Machine<br>65-2.               | Vision Algorithms and                         |  |  |
| 2. Mik<br>Pren                       | Mikell P Groover, Automation, Production System and Computer Integrated Manufacturing,<br>Prentice Hall, Publications, 2016. ISBN: 9789332549814 |                                    |                                               |  |  |
| 3. Bhat                              | tacharya S., Artificial Intelligence, Laxmi Publication                                                                                          | s, Ltd., 2008, IS                  | SBN: 9788131804896                            |  |  |
| 4. Cho                               | ora Rajiv, Artificial Intelligence, S. Chand Publishing,                                                                                         | 2012, ISBN: 9                      | 788121939485                                  |  |  |
| 5. Paw<br>8504                       | ar P. J., Evolutionary Computations for Manufacturin 6-52-0                                                                                      | ng, Studium Pre                    | ess, 2019, ISBN: 978-93-                      |  |  |
| 6. Ram<br>ISBI                       | esh Jain, Rangachar Kasturi, Brian G. Schunck, Ma<br>N 0-07-032018-7                                                                             | chine Vision, N                    | AcGraw-Hill, Inc., 1995,                      |  |  |

| Strength of CO-PO Mapping |   |    |   |   |   |   |   |   |   |    |    |    |
|---------------------------|---|----|---|---|---|---|---|---|---|----|----|----|
|                           |   | PO |   |   |   |   |   |   |   |    |    |    |
|                           | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       | 1 | -  | 1 | - | - | - | 1 | - | - | -  | -  | -  |
| CO2                       | 2 | 1  | 1 | - | - | - | 2 | - | - | -  | -  | -  |
| CO3                       | 1 | 1  | - | 1 | - | - | - | - | - | -  | -  | -  |
| CO4                       | - | -  | 1 | - | 1 | - | - | - | - | -  | -  | -  |
| CO5                       | 2 | 3  | 3 | 1 | 1 | - |   | - | - | -  | -  | -  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |          |  |  |  |
|---------|---------------------------------------------------------------------|----------|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks    |  |  |  |
|         |                                                                     | Allotted |  |  |  |
| 1       | Tests on each unit using LMS                                        | 10       |  |  |  |
|         | (Each test for 20 M and total will be converted out of 10 M)        |          |  |  |  |
| 2       | Timely Assignment Submission                                        | 10       |  |  |  |

# K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous from Academic Year 2022-23)

| Unit I      | Microcontrollers in Rob                                    | oucs and Automation                   |                                        |                                        |
|-------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
|             | Introduction to Microp                                     | rocessors and                         | (7hrs)                                 | Cos Mapped                             |
|             |                                                            | COURSE CONTEN                         | NTS                                    |                                        |
| for robotic | cs and automation challeng                                 | es.                                   |                                        |                                        |
| protocols   | and real-time operating sys                                | stems, preparing them to              | design and implement                   | nt innovative solutions                |
| learn abou  | it the architecture, program                               | ming, interfacing, and a              | dvanced topics such a                  | s communication                        |
| This cours  | se equips students with the<br>rollers focusing on their a | oretical knowledge and p              | practical skills in mici               | oprocessors and<br>ering Students will |
| Course      | context, Relevance, Pract                                  | ical Significance:                    |                                        | 1                                      |
|             | implementation of solution                                 | ons for robotic systems a             | nd automation.                         |                                        |
|             | architectures, fostering h                                 | igher-order thinking in th            | ne selection and                       |                                        |
| CO4         | Differentiate real-time or                                 | perating systems and systems          | tem-on-chip                            | 4- Analyze                             |
| CO3         | Demonstrate effective pr                                   | oblem-solving skills in a             | utomation                              | 3- Apply                               |
|             | implementation in roboti                                   | <u>cs and automation tasks.</u>       |                                        | 1                                      |
| CO2         | Implement programming<br>knowledge in assembly 1           | concepts of microcontro               | ollers, synthesizing                   | 3-Apply                                |
| <b>-</b>    | applications in robotics                                   | and automation systems.               |                                        |                                        |
| CO1         | Explain Microprocessor                                     | and microcontroller arc               | hitectures and their                   | 2-Understanding                        |
|             |                                                            | Course Outcomes                       |                                        | Bloom's Level                          |
| Course C    | Outcomes: On completion of                                 | of the course, students wi            | ill be able to                         |                                        |
| sy:         | stem-on-chip architectures.                                |                                       | ersis, rear time oper                  |                                        |
| 3. Ex       | vices, sensors, and actuator                               | rs for control and automation brother | ation tasks.<br>ocols, real-time opera | ting systems, and                      |
| 2. Ac       | equire proficiency in progra                               | amming microcontrollers               | and interfacing them                   | with external                          |
| au          | tomation systems.                                          |                                       | ares and then appred                   | tions in robotics and                  |
| Course C    | bjectives: Students able to<br>plain microprocessor and i  | ) :<br>nicrocontroller architect      | ures and their applica                 | tions in robotics and                  |
|             | te CoursesN.A.                                             |                                       |                                        |                                        |
|             | to Courses N A                                             |                                       | EndSem Exam: 6                         | JMarks                                 |
|             |                                                            |                                       | InSem Exam: 20M                        | Aarks                                  |
| Course I    | ype :DCC                                                   | 03                                    | Evaluation: 20Ma                       | rks                                    |
| Theory :    | 03hrs/week                                                 | 02                                    |                                        | 1 '                                    |
| Teaching    | s Scheme:                                                  | Credit Scheme:                        | Examination Sche                       | eme:                                   |
| Course Co   | de: ROB223003 Cou                                          | rse Subject : Microproce              | essors and Microcontr                  | ollers                                 |
| Course C    | da. DOD222002                                              | Pattern 2022 Semes                    | ter: V                                 | alla <i>u</i> a                        |
|             |                                                            |                                       |                                        |                                        |

| Unit II | Microprocessor Architecture and | (7hrs) | Cos Mapped |
|---------|---------------------------------|--------|------------|
|         | Programming for Robotics        |        | CO2        |

Internal architecture of microprocessors with emphasis on components relevant to robotics, Memory organization and addressing modes tailored to robotic applications, Instruction set architecture (ISA) focusing on instructions commonly used in automation tasks, Introduction to assembly language programming for robotics.

| Unit | Microcontroller Architecture and | (7hrs) | Cos Mapped |  |
|------|----------------------------------|--------|------------|--|
| III  | Interfacing in Automation        |        | CO3        |  |

Introduction to microcontroller architectures suitable for automation tasks (e.g., AVR, PIC), Peripherals and I/O ports relevant to automation processes, Interrupt handling and real-time control for automation systems, Timers, counters, and PWM modules for precise timing and control, Interfacing sensors, actuators, and other devices with microcontrollers in automation application.

| Unit<br>IV | Communication Protocols for Robotics and Automation | (7hrs) | Cos Mapped<br>CO3,CO4 |
|------------|-----------------------------------------------------|--------|-----------------------|
|            |                                                     |        |                       |

Serial communication protocols (UART, SPI, I2C) for data exchange in robotics and automation systems, Networking protocols for communication between robotic systems and automation controllers, Wireless communication standards (e.g., Bluetooth, Wi-Fi, Zigbee) and their applications in robotics and automation, Integration of communication protocols for seamless interaction between robotic components and automation processes.

| Unit V | Applications in Robotics and Automation | (7hrs) | Cos Mapped |
|--------|-----------------------------------------|--------|------------|
|        |                                         |        | CO3,CO4    |

Real-time operating systems (RTOS) for embedded systems in robotics and automation System-on-Chip (SoC) architectures and their role in automation controllers Case studies showcasing microprocessor and microcontroller applications in robotics and automation Project work: designing and implementing robotic systems or automation solutions using microprocessors and microcontrollers, integrating concepts learned throughout the course

- Text Books
- "Microprocessor Architecture, Programming, and Applications with the 8085" by Ramesh S. Gaonkar ISBN-13: 978-9339219817
- "Microcontroller Theory and Applications: HC12 and S12" by Daniel J. Pack and Steven F. Barrett ISBN-13: 978-0136152057
- 3. "Embedded Systems: Introduction to Arm<sup>®</sup> Cortex<sup>™</sup>-M Microcontrollers" by Jonathan Valvano ISBN-13: 978-1463590154
- 4. "Microprocessors and Microcontrollers: Architecture, Programming, and Interfacing using 8085, 8086, and ARM" by Subrata Ghoshal ISBN-13: 978-1108723523
- 5. "PIC Microcontroller and Embedded Systems: Using Assembly and C for PIC18" by Muhammad Ali Mazidi, Rolin McKinlay, and Danny Causey ISBN-13: 978-0136072299

# Strength of CO-PO Mapping

|     |   | Р | 0 |   |   |   |   |   |   |    |   |   | ] | PSO |
|-----|---|---|---|---|---|---|---|---|---|----|---|---|---|-----|
|     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 1 | 1 | 2   |
|     |   |   |   |   |   |   |   |   |   |    | 1 | 2 |   |     |
| CO1 | 1 | - | - | - | - |   | I | I | - | -  | - | 1 | 1 | 1   |
| CO2 | 2 | 2 | - | - | 2 | - | I | I | - | -  | - | 1 | 1 | 1   |
| CO3 | 2 | 2 | - | _ | 2 | - | - | - | _ | -  | _ | 1 | 1 | 1   |
| CO4 | 2 | 2 | 2 | - | 2 | - | - | - | - | -  | - | 1 | 1 | 1   |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                |  |  |  |
|---------|---------------------------------------------------------------------|----------------|--|--|--|
| Sr. No. | Components for Continuous Comprehensive Evaluation                  | Marks Allotted |  |  |  |
| 1       | Assignments on each Unit                                            | 10             |  |  |  |
| 2       | LMS Test on Each Unit                                               | 10             |  |  |  |
|         | Total                                                               | 20             |  |  |  |

| T. Y. B. Tech.<br>Robotics and Automation<br>Pattern 2022, Semester: V                                                     |                                                                                                                      |    |                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----|---------------------------------------|--|--|
| ROB223004:Name of Subject: Artificial Intelligence for Robotics LabTeaching Scheme:CreditExamination Scheme:Scheme:Scheme: |                                                                                                                      |    |                                       |  |  |
| Practical:02hrs./week                                                                                                      |                                                                                                                      | 01 | Term work : 25Marks<br>Oral :25 Marks |  |  |
| Prerequisite (                                                                                                             | Prerequisite Courses: Applied Mathematics III                                                                        |    |                                       |  |  |
| Course Objec                                                                                                               | tives:                                                                                                               |    |                                       |  |  |
| Course                                                                                                                     | rse Description                                                                                                      |    |                                       |  |  |
| Objectives                                                                                                                 | The course aims :                                                                                                    |    |                                       |  |  |
| 1                                                                                                                          | 1 Understand Fundamentals of Artificial Intelligence for Robotics.                                                   |    |                                       |  |  |
| 2                                                                                                                          | 2 Programming in C/Matlab in fuzzy logic application, annealing/genetic algorithm, ant colony optimization algorithm |    |                                       |  |  |
| 3                                                                                                                          | To learn and apply real time planning and scheduling problems                                                        |    |                                       |  |  |

| Course   | Description                                                                                                                                                                          | Blooms Level  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Outcomes | On completion of the course, students will be able to-                                                                                                                               |               |
| CO1      | Analyze the problems of C or Matlab to implement fuzzy<br>logic application for autonomous robot system, solving<br>inverse kinematic problems, ant colony optimization<br>algorithm | 4-Analyze     |
| CO2      | Understand computer vision techniques, intelligent<br>programming, and reinforced learning to teach robots to<br>make human-like decisions                                           | 2- Understand |
| CO3      | Write program using Visual Prolog to create an expert system, obstacle avoidance in mobile robots                                                                                    | 3-Apply       |
| CO4      | Implement A* algorithm to Solve 8-puzzle problem                                                                                                                                     | 3-Apply       |
| CO5      | Solving real time planning and scheduling problems using software like Witness/Pro-model                                                                                             | 3-Apply       |

### **Course context, Relevance, Practical Significance:**

The course typically helps to enable machines to sense, comprehend, act and learn human like activities. There are mainly 4 types of Artificial Intelligence: reactive machines, limited memory, theory of mind, and self-awareness.

# **Course Contents: (Perform any 7)**

| Assignment/<br>Experimen<br>t | Contents                                                                                                                | Pr.Hrs. |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|
| 1                             | Programming in C or Matlab to implement fuzzy logic application for autonomous robot system                             | 2       |
| 2                             | Programming in C/Matlab to implement simulated<br>annealing/genetic algorithm for solving inverse kinematic<br>problems | 2       |

| 3 | Programming in C/Matlab to solve traveling salesman problem using ant colony optimization algorithm                                                                                                                                                                                 | 2 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | Write program using Visual Prolog to create an expert system                                                                                                                                                                                                                        | 2 |
| 5 | Write program for obstacle avoidance in mobile robots using any one algorithm                                                                                                                                                                                                       | 2 |
| 6 | Implement A* algorithm to Solve 8-puzzle problem using.<br>Assume any initial configuration and define goal configuration<br>clearly                                                                                                                                                | 2 |
| 7 | Define the operators for controlling domestic robot; use these<br>operators to plan an activity to be executed by the robot. For<br>example, transferring two/three objects one over the other from<br>one place to another. Use Means-Ends analysis with all the steps<br>revealed | 2 |
| 8 | Solving real time planning and scheduling problems using software like Witness/Pro-model                                                                                                                                                                                            | 2 |

# **Course Mapping:**

| Experi<br>ment | Contents                                                                                                                                                                                                                                                                               | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|
| 1              | Programming in C or Matlab to implement fuzzy<br>logic application for autonomous robot system                                                                                                                                                                                         | 1,2           | 1,2          | 1             |
| 2              | Programming in C/Matlab to implement simulated<br>annealing/genetic algorithm for solving inverse<br>kinematic problems                                                                                                                                                                | 1,2           | 1,2          | 1             |
| 3              | Programming in C/Matlab to solve traveling<br>salesman problem using ant colony optimization<br>algorithm                                                                                                                                                                              | 2             | 1,2,3,4      | 1             |
| 4              | Write program using Visual Prolog to create an expert system                                                                                                                                                                                                                           | 2,3           | 1,2,4        | 1             |
| 5              | Write program for obstacle avoidance in mobile robots using any one algorithm                                                                                                                                                                                                          | 2,3           | 1,2          | 1             |
| 6              | Implement A* algorithm to Solve 8-puzzle<br>problem using. Assume any initial configuration<br>and define goal configuration clearly                                                                                                                                                   | 4,5           | 1,2,4,5      | 1             |
| 7              | Define the operators for controlling domestic<br>robot; use these operators to plan an activity to be<br>executed by the robot. For example, transferring<br>two/three objects one over the other from one<br>place to another. Use Means-Ends analysis with<br>all the steps revealed | 4,5           | 1,2,4,5      | 1             |
| 8              | Solving real time planning and scheduling problems using software like Witness/Pro-model                                                                                                                                                                                               | 4,5           | 1,2,4,5      | 1             |

|                                                                              | T. Y. B. Tech.<br>Pattern 2022, Semester: V                              |                   |                                           |  |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|-------------------------------------------|--|--|--|
| Course Code: ROB223005 Course Subject : Microprocessors and Microcontrollers |                                                                          |                   |                                           |  |  |  |
| Teaching Scl                                                                 | neme:                                                                    | Credit<br>Scheme: | Examination Scheme:                       |  |  |  |
| Practical : 02                                                               | hrs./week                                                                | 01                | Term work : 25 Marks                      |  |  |  |
|                                                                              |                                                                          |                   | Practical : 25 Marks                      |  |  |  |
| Prerequisite                                                                 | Courses: N.A                                                             |                   |                                           |  |  |  |
| Course Obje                                                                  | ctives:                                                                  |                   |                                           |  |  |  |
| Course                                                                       | Course Description                                                       |                   |                                           |  |  |  |
| Objectives                                                                   |                                                                          |                   |                                           |  |  |  |
| 1                                                                            | Explain microprocessor and microcontroller architectures and their       |                   |                                           |  |  |  |
|                                                                              | applications in robotics and automation systems.                         |                   |                                           |  |  |  |
| 2                                                                            | Acquire proficiency in programming microcontrollers and interfacing them |                   |                                           |  |  |  |
|                                                                              | with external devices, s                                                 | sensors, and act  | tuators for control and automation tasks. |  |  |  |
| 3                                                                            | Explore advanced topic                                                   | es such as com    | munication protocols, real-time           |  |  |  |
|                                                                              | operating systems, and                                                   | system-on-chi     | p architectures.                          |  |  |  |

| Course  | Description                                                | Blooms level    |
|---------|------------------------------------------------------------|-----------------|
| Outcome | Student will be able to:                                   |                 |
| S       |                                                            |                 |
| 1       | Explain Microprocessor and microcontroller architectures   | 2-Understanding |
|         | and their applications in robotics and automation systems. |                 |
| 2       | Implement programming concepts of microcontrollers,        | 3-Apply         |
|         | synthesizing knowledge in assembly language and high-      |                 |
|         | level languages for practical implementation in robotics   |                 |
|         | and automation tasks.                                      |                 |
| 3       | Demonstrate effective problem-solving skills in            | 3- Apply        |
|         | automation applications.                                   |                 |
| 4       | Differentiate real-time operating systems and system-on-   | 4- Analyze      |
|         | chip architectures, fostering higher-order thinking in the |                 |
|         | selection and implementation of solutions for robotic      |                 |
|         | systems and automation.                                    |                 |

#### **Course context, Relevance, Practical Significance:**

This course equips students with theoretical knowledge and practical skills in microprocessors and microcontrollers, focusing on their applications in robotics and automation engineering. Students will learn about the architecture, programming, interfacing, and advanced topics such as communication protocols and real-time operating systems, preparing them to design and implement innovative solutions for robotics and automation challenges.

#### **Course Contents:**

| Sr.<br>No. | Content<br>s                                                                                                                                                                         | Pr.<br>Hrs. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1          | Basic Assembly Language Programming.                                                                                                                                                 | 2           |
| 2          | <ul> <li>i. Implement logical operations (AND, OR, XOR, NOT) in<br/>assembly language.</li> <li>ii. Develop programs to manipulate data in memory (copy, move,<br/>swap).</li> </ul> | 2           |
| 3          | Sensor Interfacing and Data Acquisition                                                                                                                                              | 2           |
| 4          | Control DC motors using microcontroller PWM outputs for speed control.                                                                                                               | 2           |
| 5          | Interface servo motors for angular control in robotic applications                                                                                                                   | 2           |
| 6          | Implement serial communication between two microcontrollers using UART.                                                                                                              | 2           |
| 7          | Implement interrupt-based timers for real-time control tasks.                                                                                                                        | 2           |

# **Course Mapping:**

| Assignment/<br>Experiment | Contents                                                                                                                                                                                       | CO-<br>mapped | PO<br>mapped | PSO<br>map<br>ped |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------------|
| 1                         | Basic Assembly Language Programming.                                                                                                                                                           | 2,3           | 1,2,12       | 1                 |
| 2                         | <ul> <li>iii. Implement logical operations<br/>(AND, OR, XOR, NOT) in<br/>assembly language.</li> <li>iv. Develop programs to manipulate<br/>data in memory (copy, move,<br/>swap).</li> </ul> | 2,3           | 1,2,12       | 1                 |
| 3                         | Sensor Interfacing and Data Acquisition                                                                                                                                                        | 2,3           | 1,2,5,12     | 1                 |
| 4                         | Control DC motors using microcontroller<br>PWM outputs for speed control.                                                                                                                      | 2,3           | 1,2,5,12     | 1                 |
| 5                         | Interface servo motors for angular control<br>in robotic applications                                                                                                                          | 2,3           | 1,2,5,12     | 1                 |
| 6                         | Implement serial communication between two microcontrollers using UART.                                                                                                                        | 2,3           | 1,2,5,12     | 1                 |
| 7                         | Implement interrupt-based timers for real-<br>time control tasks.                                                                                                                              | 2,3           | 1,2,5,12     | 1                 |

#### K. K. Wagh Institute of Engineering Education and Research, Nashik ( Autonomous from Academic Year 2022-23)

| Course Code : ROB223006 Pattern 2022 Semester: V<br>Course Name: Elective 1 (A)Python Programming |                                                                                                           |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Credit Scheme:                                                                                    | Examination Scheme:                                                                                       |  |  |  |  |
| 03                                                                                                | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks            |  |  |  |  |
| expected to have a good                                                                           | understanding of basic computer                                                                           |  |  |  |  |
|                                                                                                   | Pattern 2022       Semester         Course Name:       E         Credit       Scheme:         03       03 |  |  |  |  |

Prime objective is to give students a basic introduction to programming and problem solving with computer language Python. And to introduce students not merely to the coding of computer programs, but to computational thinking, the methodology of computer programming, and the principles of good program design including modularity and encapsulation.

1. To understand problem solving, problem solving aspects, programming and to know about various program design tools.

2. To learn problem solving with computers

3. To learn basics, features and future of Python programming.

4. To acquaint with data types, input output statements, decision making, looping and functions in Python

5. To learn features of Object Oriented Programming using Python

|     | Course Outcomes                                                                                                                                                    | Bloom's Level |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| CO1 | Inculcate and apply various skills in problem solving                                                                                                              | 1             |
| CO2 | Choose most appropriate programming constructs and features to solve<br>the problems in diversified domains.                                                       | 2             |
| CO3 | Exhibit the programming skills for the problems those require the writing of well documented programs including use of the logical constructs of language, Python. | 2             |
| CO4 | Demonstrate significant experience with the Python program<br>development environment                                                                              | 2             |

#### **COURSE CONTENTS**

|                  |                                                     | 0         |                              |
|------------------|-----------------------------------------------------|-----------|------------------------------|
| Unit I           | <b>Basics of Python Programming</b>                 | (7hrs)    | Cos Mapped                   |
|                  |                                                     |           | COI                          |
| <b>Basics</b> of | <b>Python Programming</b> . Features of Python Hist | ory and F | Suture of Python Writing and |

**Basics of Python Programming**: Features of Python, History and Future of Python, Writing and executing Python program, Literal constants, variables and identifiers, Data Types, Input operation, Comments, Reserved words, Indentation, Operators and expressions, Expressions in Python.

| Unit II     |                | Decision Con       | trol Statements      |                    | (7hrs) | )         | Cos Mapped<br>CO2  |             |
|-------------|----------------|--------------------|----------------------|--------------------|--------|-----------|--------------------|-------------|
| Decision    | Control        | Statements:        | Decision contr       | ol stater          | nents, | Selection | on/conditional     | branching   |
| Statement   | s: if, if-else | e, nested if, if-o | elif-else statemen   | ts. <b>Basic</b> I | loop S | tructures | /Iterative statem  | ents: while |
| loop, for l | loop, select   | ting appropriate   | e loop. Nested lo    | ops, The           | break, | continue  | , pass, else state | ement used  |
| with loops  | 3. Other dat   | ta types- Tuple    | s, Lists and Diction | onary.             |        |           |                    |             |
|             |                |                    |                      |                    |        |           |                    |             |

| Unit<br>III                                                                      | Fu                                                                                  | nctions                                                 | and M                                              | odules                                             | 5                                                |                                   |                                           | (7hrs                                             | \$)                                        | Co<br>CC                                          | s Mapp<br>)3                                        | oed                                                |                                |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------|
| Need f<br>Definin<br>practice<br>module                                          | or functio<br>g functio<br>s. Introdu<br>s.                                         | ons, <b>Fu</b><br>ons, Land<br>action to                | nction<br>mbda<br>modu                             | : defir<br>or and<br>les, Int                      | nition,<br>onymou<br>roductio                    | call, va<br>1s func<br>on to pa   | ariable s<br>ction, d<br>ackages          | scope a<br>ocumer<br>in Pytl                      | and life<br>ntation<br>non, Int            | etime,<br>string,<br>roducti                      | the ret<br>, good<br>ion to s                       | urn state<br>prograr<br>tandard                    | ement<br>nming<br>library      |
| Unit<br>IV                                                                       |                                                                                     | S                                                       | trings                                             | and Di                                             | ictiona                                          | ries                              |                                           | (7hrs                                             | 5)                                         | Co<br>CC                                          | s Mapp<br>04                                        | oed                                                |                                |
| strings<br>function                                                              | formattin<br>is, in and                                                             | g opera<br>not in op                                    | tor, bu<br>perator                                 | uilt in<br>s, com                                  | string paring s                                  | method<br>strings,                | s and f<br>Iterating                      | unction<br>s string                               | s. Slices, the st                          | ring m                                            | ation, o                                            | ord() and                                          | chr                            |
| Unit                                                                             |                                                                                     | Obje                                                    | ct Orio                                            | ented I                                            | Program                                          | mming                             |                                           | (7hrs                                             | 5)                                         | Co<br>CC                                          | s Mapp<br>)4                                        | oed                                                |                                |
| 1 2                                                                              | Reema Tl<br>Press, ISE<br>R. Nages                                                  | nareja, "<br>3N 13: 9<br>swara R                        | Python<br>78-0-1<br>ao, "C                         | Progr<br>9-9480<br>ore Py                          | amming<br>)17-6<br>thon Pi                       | g Using                           | Problem                                   | n Solv<br>Dreamt                                  | ing App<br>ech Pre                         | oroach'<br>ss; Seo                                | ', Oxfor                                            | rd Unive<br>lition IS                              | ersity<br>BN1(                 |
|                                                                                  | 93860523                                                                            | 0X, ISB                                                 | N-13:                                              | 978-93                                             | 8860523                                          | 308 AS                            | IN: B07                                   | BFSR3                                             | LL                                         | ,                                                 |                                                     |                                                    |                                |
| <ol> <li>R.<br/>813<br/>Con</li> <li>Ron<br/>178</li> <li>Pau<br/>93-</li> </ol> | G. Dromo<br>1705625,<br>ncepts", P<br>nano Fa<br>3551712<br>il Barry, '<br>5213-482 | ey, "Ho<br>ISBN-<br>earson;<br>brizio,<br>'Head F<br>-3 | w to S<br>13: 978<br>9th edi<br>"Learr<br>irst Pyt | olve it<br>3-8131<br>tion, IS<br>ning P<br>thon- A | by Co<br>705629<br>SBN-10<br>Python",<br>A Brain | mputer<br>Maure<br>97801<br>Packt | ", Pears<br>en Spar<br>324926<br>t Publis | on Edu<br>Ikle, "H<br>45, ISE<br>shing<br>e", SPE | Problem<br>BN-13: 9<br>Limited<br>O O'Reil | India;<br>Solvin<br>978- 01<br>I, ISB<br>Ily, 2nd | 1st edit<br>ng and<br>1324926<br>N: 978<br>d Editic | tion, ISB<br>Program<br>545<br>8178355<br>on, ISBN | N10:<br>ming<br>1712,<br>:978- |
|                                                                                  |                                                                                     |                                                         |                                                    | Stı                                                | rength c                                         | of CO-P                           | O Mapp                                    | oing                                              |                                            |                                                   |                                                     |                                                    |                                |
|                                                                                  | 1 2                                                                                 | 3                                                       | Δ                                                  | 5                                                  | 6                                                | 7                                 | PO<br>8                                   | 0                                                 | 10                                         | 11                                                | 12                                                  | DSO1                                               | DC                             |
| )1                                                                               | $\frac{1}{2}$ $\frac{2}{1}$                                                         | 2                                                       | -                                                  | 2                                                  | -                                                | -                                 | -                                         | 7                                                 | -                                          | -                                                 | 12                                                  | 1                                                  |                                |
| 2                                                                                | 2 1                                                                                 | 2                                                       | -                                                  | 2                                                  | -                                                | -                                 | -                                         | -                                                 | -                                          | -                                                 | 1                                                   | 1                                                  | -                              |
| 3                                                                                | 2 1                                                                                 | 2                                                       | -                                                  | 2                                                  | -                                                | -                                 | -                                         | -                                                 | -                                          | -                                                 | 1                                                   | 1                                                  | -                              |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory | Course                |
|---------|--------------------------------------------------------------|-----------------------|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>    | <b>Marks</b> Allotted |
| 1       | Assignments on each Unit                                     | 10                    |
| 2       | LMS Test on Each Unit                                        | 10                    |
|         | Total                                                        | 20                    |

-

-

CO4

1

2

-

2

2

-

-

-

-

-

1

1

|                                                                   | T. Y.<br>223006A: Name                                                                                                                         | B. Tech. Robotics and A<br>Pattern 2022, Semeste<br>of Subject: Elective I (B                                                   | Automation<br>er: V<br>5): Reverse Eng                                             | gineering                                                                                                    |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Teaching                                                          | g Scheme:                                                                                                                                      | Credit Scheme:                                                                                                                  | Examination                                                                        | Scheme:                                                                                                      |
| Theory :                                                          | 03hrs/week                                                                                                                                     | 03                                                                                                                              | In Sem Exam<br>End Sem Exa<br>CCE: 20 Mar                                          | : 20 Marks<br>m: 60 Marks<br>ks                                                                              |
| Prerequi                                                          | site Courses: - Computer C                                                                                                                     | araphics for Robotics, De                                                                                                       | sign of Machine                                                                    | e Elements                                                                                                   |
| Course (<br>Understa<br>Understa<br>Understa<br>Apply Se          | <b>Objectives:</b><br>nd the Reverse Engineering.<br>nd the Methodologies and T<br>nd Reverse Engineering–Ha<br>election of a Reverse Engine   | 'echniques for Reverse Er<br>Irdware and Software.<br>ering System                                                              | ngineering.                                                                        |                                                                                                              |
| Course (                                                          | <b>Jutcomes:</b> On completion o                                                                                                               | of the course, students wil                                                                                                     | l be able to-                                                                      |                                                                                                              |
|                                                                   | D                                                                                                                                              | Course Outcomes                                                                                                                 | ·                                                                                  | Bloom's Level                                                                                                |
| CO1                                                               | applications                                                                                                                                   | verse engineering system                                                                                                        | to various                                                                         | 2. Understand                                                                                                |
| CO2                                                               | Interpreting the terminolog<br>engineering, and reverse engineering                                                                            | gies related to re-engineer ngineering.                                                                                         | ing, forward                                                                       | 3 Apply                                                                                                      |
| CO3                                                               | Disassemble products and subsystems and their funct                                                                                            | specify the interactions b<br>ionality                                                                                          | between its                                                                        | 3 Apply                                                                                                      |
| CO4                                                               | Implement the Reverse En                                                                                                                       | gineering methodologies                                                                                                         |                                                                                    | 3 Apply                                                                                                      |
|                                                                   |                                                                                                                                                | COURSE CONTENT                                                                                                                  | S                                                                                  |                                                                                                              |
| Unit I                                                            | Introduction to Reverse I                                                                                                                      | Engineering                                                                                                                     | (07 hrs)                                                                           | COs Mapped:<br>CO1                                                                                           |
| What is R<br>Scanning:<br>Developm                                | everse Engineering, Use of<br>Contact Scanners, Noncont<br>ent. Applications of reverse                                                        | Reverse Engineering, Re<br>act Scanners, Point Proce<br>engineering                                                             | everse Engineer<br>essing, and App                                                 | ing–The Generic Process<br>lication Geometric Model                                                          |
| Unit II                                                           | Methodologies and Tec<br>Reverse Engineering                                                                                                   | hniques for                                                                                                                     | (07 hrs)                                                                           | COs Mapped:<br>CO2, CO3                                                                                      |
| 3-D Laser<br>aided (Fo<br>Engineerin<br>Structured<br>Pipeline, I | Scanners, Computer-aided<br>rward) Engineering, Comp<br>1g, Coordinate Measuring M<br>-light Range Imaging, Sour<br>Data Collection, Mesh Reco | Reverse Engineering, Whoter-aided Reverse Engineering<br>fachines, Active Illumination Categorie<br>nstruction, Surface Fitting | at Is Not Revers<br>ineering, Comp<br>tion 3-D Stereo:<br>es, sheet-of-light<br>g. | se Engineering, Computer<br>outer Vision and Reverse<br>: Benefits and Drawbacks<br>t Range Imaging, Scanner |
| Unit II                                                           | I Reverse Engineerin<br>Softw                                                                                                                  | ng–Hardware and<br>vare                                                                                                         | (07 hrs)                                                                           | COs Mapped:<br>CO2, CO3                                                                                      |
| Introduct<br>Method,<br>Engineer                                  | ion, Reverse Engineering<br>Reverse Engineering Sof<br>ing Phases, Fundamental Re                                                              | Hardware, Contact Meth<br>tware, Reverse Engined<br>everse Engineering Opera                                                    | nods, Nonconta<br>ering Software<br>ttions.                                        | ct Methods, Destructive<br>Classification, Reverse                                                           |

|         |                                           | (07  | COs Mapped: |
|---------|-------------------------------------------|------|-------------|
| Unit IV | Selection of a Reverse Engineering System | hrs) | CO3, CO4    |

The Selection Process: Identify the Business Opportunity and Technical requirements, Vendor and System Information Gathering, Benchmarking, Point Capture Devices, contact Devices–Hard or Manual Probe, Touch-trigger Probe, Continuous Analogue Scanning Probe, Noncontact Devices, Triangulation, "Time-offlight" or Ranging Systems, Structured-light and Stereoscopic Imaging Systems, Issues with Light-based Approaches, Tracking Systems, Internal Measurement Systems, Xray Tomography, Destructive Systems, Positioning the Probe, Post processing the Captured Data, Handling Data Points, Curve and Surface Creation, Inspection Applications, Manufacturing approaches.

| Linit V | Rapid prototyping for Reverse | (07 hrs) | COs Mapped: |
|---------|-------------------------------|----------|-------------|
| Unit v  | Engineering                   |          | CO3, CO4    |

Modelling Cloud Data in Reverse Engineering, Data Processing for Rapid Prototyping, Integration of RE and RP for Layer-based Model Generation, The Adaptive Slicing Approach for Cloud Data Modelling, Planar Polygon Curve Construction for a Layer, Correlation Coefficient, Initial Point Determination, Constructing the First Line Segment (S1), constructing the Remaining Line Segments (Si, Determination of Adaptive Layer Thickness)

#### **Reference Books**

- K. Otto and K. Wood (2001) Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall (ISBN 10: 0130212717 / ISBN 13: 9780130212719).
- Raja and Fernandes (2008) Reverse Engineering: An Industrial Perspective, Springer-Verlag (ISBN: 978-1-84628-855-5).
- Sokovic and Kopac (2006) RE as necessary phase by rapid product development, Journal of Materials Processing Technology, Elsevier (doi:10.1016/j.jmatprotec.2005.04.047).
- 4. Eldad Eilam (2005) Reversing: Secrets of Reverse Engineering, Wiley (ISBN: 0-7645-7481-7).
- Robert W. Messler (2014) Reverse Engineering: Mechanisms, Structures, Systems & Materials, McGraw-Hill Education (ISBN: 9780071825160).

|     |   |   | Str | ength of | f CO-PC | ) Map | ping |   |   |    |    |    |
|-----|---|---|-----|----------|---------|-------|------|---|---|----|----|----|
|     |   |   |     |          |         | PO    |      |   |   |    |    |    |
|     | 1 | 2 | 3   | 4        | 5       | 6     | 7    | 8 | 9 | 10 | 11 | 12 |
| CO1 | 1 | - | 1   | -        | -       | -     | 1    | 1 | - | -  | 1  | -  |
| CO2 | 2 | 1 | -   | -        | -       | -     | 2    | - | - | -  | -  | -  |
| CO3 | 2 | - | -   | 1        | -       | -     | -    | - | - | -  | -  | -  |
| CO4 | 2 | _ | 1   | _        | 1       | -     | -    | - | - | -  | -  | _  |
| CO5 | 4 | 3 | 3   | 1        | 1       | -     | 4    | - | - | -  | -  | -  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Cours | e        |
|---------|--------------------------------------------------------------------|----------|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>          | Marks    |
|         |                                                                    | Allotted |
| 1       | Tests on each unit using LMS                                       | 10       |
|         | (Each test for 20 M and total will be converted out of 10 M)       |          |
| 2       | Timely Assignment Submission                                       | 10       |

# K. K. Wagh Institute of Engineering Education and Research, Nashik

# (Autonomous from Academic Year 2022-23)

|                                                      |                                                     |                                                                                      | T. Y. B. Tech.<br>Pattern 2022 Semester                                                                        | r: M                                                                    |                                                                                                         |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                      | Code                                                | ROB223014                                                                            | Course Name : Elective                                                                                         | e I (C) JAVA P                                                          | rogramming                                                                                              |
| Teaching                                             | Scheme:                                             |                                                                                      | Credit Scheme:                                                                                                 | Examination                                                             | Scheme:                                                                                                 |
| Theory :0                                            | 3hrs/wee                                            | k                                                                                    | 03                                                                                                             | Continuous C<br>Evaluation: 2<br>InSem Exam<br>EndSem Exam              | Comprehensive<br>20Marks<br>: 20Marks<br>m: 60Marks                                                     |
| Prerequis                                            | ite Cours                                           | ses: -                                                                               |                                                                                                                | <u> </u>                                                                |                                                                                                         |
| Course O                                             | bjectives:                                          | :                                                                                    |                                                                                                                |                                                                         |                                                                                                         |
| 1. Make th<br>Java.<br>2. Develoj                    | ne students<br>o an ability                         | s familiar with bas<br>y to write various                                            | ic concepts and technique<br>programs in Java for prob                                                         | es of object orie<br>olem solving.                                      | ented programming in                                                                                    |
| Course O                                             | utcomes:                                            | On completion of                                                                     | the course, students will                                                                                      | be able to                                                              |                                                                                                         |
|                                                      |                                                     |                                                                                      | Course Outcomes                                                                                                |                                                                         | Bloom's Level                                                                                           |
| CO1                                                  | Understa                                            | and the basic princ                                                                  | iples of Java programmin                                                                                       | ng language                                                             | 1                                                                                                       |
| CO2                                                  | Apply th                                            | e concepts of clas                                                                   | ses and objects to write p                                                                                     | orograms in Java                                                        | ı 2                                                                                                     |
| CO3                                                  | Demons                                              | trate the concepts                                                                   | of methods & Inheritance                                                                                       | 2                                                                       | 2                                                                                                       |
| CO4                                                  | Use the                                             | concepts of interfa                                                                  | ces & packages for prog                                                                                        | ram implementa                                                          | tion 2                                                                                                  |
| CO5                                                  | Understa<br>robust pi                               | and multithreading<br>rograms                                                        | and Exception handling                                                                                         | in Java to deve                                                         | lop 2                                                                                                   |
|                                                      |                                                     |                                                                                      | COURSE CONTENT                                                                                                 | S                                                                       |                                                                                                         |
| Unit I                                               |                                                     | JAVA Fund                                                                            | amentals                                                                                                       | (08hrs)                                                                 | Cos Mapped<br>CO1, CO2, CO4,<br>CO5                                                                     |
| Review of<br>languages<br>Overview<br>Java.          | f Object o<br>, Java fea<br>of Java L               | priented concepts,<br>tures, Java and W<br>anguage, Simple                           | Evolution of Java, Com<br>orld Wide Web, Java Ru<br>Java Program, Java Prog                                    | parison of Java<br>un Time Enviro<br>ram Structure.                     | with other programming<br>onment. JVM architecture.<br>Installing and Configuring                       |
| Java Toke<br>to variable<br>Standard o<br>and associ | ns, Java S<br>es, Scope<br>default va<br>atively, M | Statements, Consta<br>of variables, arra<br>lues, Operators, E<br>lathematical funct | ants, variables, data types<br>ys, Symbolic constants,<br>xpressions, Type conver<br>ions, Control statements- | s. Declaration o<br>Typecasting, G<br>sion in express<br>Decision makin | f variables, Giving values<br>etting values of variables,<br>ions, Operator precedence<br>ng & looping. |
| Unit II                                              |                                                     | Classes and                                                                          | Objects                                                                                                        | (8hrs)                                                                  | Cos Mapped<br>CO2                                                                                       |
| Class Fun<br>Methods,<br>Overloadi                   | damentals<br>Construct<br>ng, static 1              | , Creating Objects<br>tors, using object<br>members, Nesting                         | , Accessing Class memb<br>s as parameters, Argun<br>of Methods, this keywo                                     | ers, Assigning (<br>nent passing, r<br>rd, Garbage col                  | Dbject reference variables,<br>eturning objects, Method<br>lection, finalize methods, ,                 |

| Unit<br>III                                                                                                                            | Methods & Inheritance in JAVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (8hrs)                                                                                                      | Cos Mapped<br>CO3                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Abstract N<br>enumerate                                                                                                                | Methods and classes, Strings ,One dimensional and ed types, Command line arguments                                                                                                                                                                                                                                                                                                                                                                                                                           | l two dimens                                                                                                | ional arrays, wrapper classes                                                                                                                |
| Inheritanc<br>overriding                                                                                                               | e: Inheritance in Java, Creating Multilevel hierarc<br>, Dynamic method dispatch.                                                                                                                                                                                                                                                                                                                                                                                                                            | chy, Construe                                                                                               | ctors in derived class, Metho                                                                                                                |
| Unit<br>IV                                                                                                                             | Interfaces & Packages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (8hrs)                                                                                                      | Cos Mapped<br>CO4                                                                                                                            |
| 0                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                                                              |
| Packages:<br>Importing                                                                                                                 | Java API Packages, Using System Packages, packages, Adding a class to a Package, Hiding class                                                                                                                                                                                                                                                                                                                                                                                                                | Creating acc<br>sses                                                                                        | cessing and using a package                                                                                                                  |
| Packages:<br>Importing<br>Unit V                                                                                                       | Java API Packages, Using System Packages, operation packages, Adding a class to a Package, Hiding class Multithreading & Exception Handling                                                                                                                                                                                                                                                                                                                                                                  | Creating acc<br>sses<br>(8hrs)                                                                              | Cos Mapped<br>CO5                                                                                                                            |
| Packages:<br>Importing<br>Unit V<br>Introduction<br>Exception<br>statements<br>difference<br>applet.                                   | Java API Packages, Using System Packages, or<br>packages, Adding a class to a Package, Hiding class<br><b>Multithreading &amp; Exception Handling</b><br>on to multithreading: Introduction, Creating thread<br>handling: Introduction, Types of errors, Exception<br>s. I/O basics, Reading console inputs, Writing Cons<br>s between applets and applications, life cycle of an                                                                                                                            | Creating acc<br>sses<br>(8hrs)<br>and extendin<br>handling syr<br>ole output. A<br>applet, types            | Cos Mapped<br>CO5<br>g thread class. Concept of<br>ntax, Multiple catch<br>pplets: Concepts of Applets,<br>of applets, creating a simple     |
| Packages:<br>Importing<br>Unit V<br>Introductio<br>Exception<br>statements<br>difference<br>applet.                                    | Java API Packages, Using System Packages, or<br>packages, Adding a class to a Package, Hiding class<br><b>Multithreading &amp; Exception Handling</b><br>on to multithreading: Introduction, Creating thread<br>handling: Introduction, Types of errors, Exception<br>s. I/O basics, Reading console inputs, Writing Cons<br>s between applets and applications, life cycle of an<br><b>Text Books</b>                                                                                                       | Creating acc<br>sses<br>(8hrs)<br>and extendin<br>handling syr<br>ole output. A<br>applet, types            | Cos Mapped<br>CO5<br>g thread class. Concept of<br>ntax, Multiple catch<br>splets: Concepts of Applets,<br>of applets, creating a simple     |
| Packages:<br>Importing<br>Unit V<br>Introductio<br>Exception<br>statements<br>difference<br>applet.<br>1. E Balag<br>2. Herbert        | Java API Packages, Using System Packages, or<br>packages, Adding a class to a Package, Hiding class<br><b>Multithreading &amp; Exception Handling</b><br>on to multithreading: Introduction, Creating thread<br>handling: Introduction, Types of errors, Exception<br>s. I/O basics, Reading console inputs, Writing Cons<br>s between applets and applications, life cycle of an<br><b>Text Books</b><br>gurusamy, "Programming with JAVA", Tata McGra<br>Schildt, "Java: The complete reference", Tata McC | Creating accesses (8hrs) and extendin handling syr ole output. A applet, types w Hill, 6th F Graw Hill, 7th | Cos Mapped<br>CO5<br>g thread class. Concept of<br>ntax, Multiple catch<br>splets: Concepts of Applets,<br>of applets, creating a simple     |
| Packages:<br>Importing<br><b>Unit V</b><br>Introductio<br>Exception<br>statements<br>difference<br>applet.<br>1. E Balag<br>2. Herbert | Java API Packages, Using System Packages, or<br>packages, Adding a class to a Package, Hiding class<br><b>Multithreading &amp; Exception Handling</b><br>on to multithreading: Introduction, Creating thread<br>handling: Introduction, Types of errors, Exception<br>s. I/O basics, Reading console inputs, Writing Cons<br>s between applets and applications, life cycle of an<br><b>Text Books</b><br>gurusamy, "Programming with JAVA", Tata McGra<br>Schildt, "Java: The complete reference", Tata McC | Creating accesses (8hrs) and extendin handling syr ole output. A applet, types w Hill, 6th F Graw Hill, 7th | Cos Mapped<br>CO5<br>g thread class. Concept of<br>ntax, Multiple catch<br>of applets: Concepts of Applets,<br>of applets, creating a simple |

2. Y. Daniel Liang (2010), "Introduction to Java programming", Pearson Education, India, 7th Edition.3. Cay Horstmann , "Core Java Volume 1", Kindle, 11th Edition.

| Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |   |    |    |    |      |      |
|---------------------------|----|---|---|---|---|---|---|---|---|----|----|----|------|------|
|                           | PO |   |   |   |   |   |   |   |   |    |    |    |      |      |
|                           | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | PSO1 | PSO2 |
| CO1                       | 2  | - | 2 | - | 2 | - | - | - | - | -  | -  | 1  | -    | -    |
| CO2                       | 2  | - | 2 | - | 2 | - | - | - | - | -  | -  | 1  | -    | -    |
| CO3                       | 2  | - | 2 | - | 2 | - | - | - | - | -  | -  | 1  | -    | -    |
| CO4                       | 1  | - | 2 | - | 2 | - | - | - | - | -  | -  | 1  | -    | -    |

| Guidelines for Continuous Comprehensive Evaluation of Theory Course |                                                                      |    |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------|----|--|--|--|
| Sr. No.                                                             | o. Components for Continuous Comprehensive Evaluation Marks Allotted |    |  |  |  |
| 1                                                                   | Assignments on each Unit                                             | 10 |  |  |  |
| 2                                                                   | LMS Test on Each Unit                                                | 10 |  |  |  |
|                                                                     | Total                                                                | 20 |  |  |  |

#### K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                                                               | T. Y. B. Tech.<br>Robotics and Automation (Pattern 2022)<br>Semester: V<br>ROB223006D:Elective I(D)- Digital Signal Processing                                                                      |                                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Teachin                                                                                       | Teaching Scheme:Credit Scheme:Examination Scheme:                                                                                                                                                   |                                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| Theory:                                                                                       | 03hrs/week                                                                                                                                                                                          | 03                                                                                                                                                | Continuous Comprehensive<br>Evaluation: 20Marks<br>In Sem Exam: 20 Marks<br>EndSemExam:60Marks                         |                                                                                                       |  |  |  |
| Prerequ                                                                                       | isite Courses: - Mathematic                                                                                                                                                                         | es, Fourier series, Fourier                                                                                                                       | transform, Z transfor                                                                                                  | m                                                                                                     |  |  |  |
| Course O<br>1. Undersi<br>for the and<br>2.Analyze<br>analysis fo<br>3. Undersi<br>includes F | bjectives: At the end of the<br>tand basics of digital signals<br>alysis of discrete systems<br>discrete signals as well as<br>or the same.<br>tand the basics of filter desi<br>TR and IIR filters | course, a student will be<br>s and systems and unders<br>discrete systems in frequ<br>gn with clear understand                                    | able to –<br>stand the basic mather<br>ency domain and app<br>ing of the notion of d                                   | matical tools needed<br>ly related numerical<br>igital filtering which                                |  |  |  |
| Course                                                                                        | Course Outcomes Bloom's Leve                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| CO1                                                                                           | Classify discrete time sign transform of DTS                                                                                                                                                        | 2-Understanding                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| CO2                                                                                           | Recognize types of discret systems.                                                                                                                                                                 | 2-Understanding                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| CO3                                                                                           | Compute the response of discrete-time systems to various input signals. 3-Apply                                                                                                                     |                                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| CO4                                                                                           | Evaluate and analyze the frequency domain characteristics of Discrete-<br>Time Systems 4-Analyze                                                                                                    |                                                                                                                                                   |                                                                                                                        |                                                                                                       |  |  |  |
| CO5                                                                                           | Design and implement diff                                                                                                                                                                           | ferent frequency selective                                                                                                                        | e FIR and IIR filters.                                                                                                 | 3-Apply                                                                                               |  |  |  |
|                                                                                               |                                                                                                                                                                                                     | COURSE CONTENT                                                                                                                                    | ſS                                                                                                                     |                                                                                                       |  |  |  |
| Unit I                                                                                        | Discrete Time Signals<br>Systems                                                                                                                                                                    | and                                                                                                                                               | (07hrs)                                                                                                                | COs Mapped<br>-CO1, CO2                                                                               |  |  |  |
| Basic ele<br>sequence<br>Classific<br>propertie<br>Domain<br>Process:                         | ements of Digital signal Pro<br>s and sequence operation<br>ation, Linear Time Invariant<br>s of LTI systems: stability<br>representation of sampling<br>Sampling, quantization and                 | cessing System, Analog,<br>s, Discrete time system<br>Systems, impulse respon<br>, causality, Periodic Sa<br>, reconstruction of a ba<br>encoding | Discrete-time and Di<br>ns, Properties of D<br>nse, linear convolution<br>mpling, Sampling Tl<br>and limited Signal, A | gital signals, Basic<br>T. Systems and<br>and its properties,<br>beorem, Frequency<br>to D conversion |  |  |  |

| Unit II                                                                                            | Frequency analysis of discrete time                     | (07hrs)                  | COs Mapped           |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|----------------------|--|--|--|--|
|                                                                                                    | signals                                                 |                          | CO1,CO2,CO           |  |  |  |  |
|                                                                                                    |                                                         |                          | 3                    |  |  |  |  |
| <b>Discrete Time Fourier Transform:</b> Representation of Sequences by Fourier Transform, Symmetry |                                                         |                          |                      |  |  |  |  |
| properties o                                                                                       | f D. T., F. T. theorems: Linearity, time shif           | ting, frequency shifting | g. time reversal.    |  |  |  |  |
| lifferentiatio                                                                                     | n convolution theorem Frequency response an             | alvsis of first and seco | and order system     |  |  |  |  |
| ta a dev atata d                                                                                   | and transient manage                                    | arysis of first and seed | fild older system,   |  |  |  |  |
|                                                                                                    | ind transient response,                                 |                          |                      |  |  |  |  |
| Z-Transfori                                                                                        | <b>n</b> :Revision of Z-transform, Numerical of Z trans | sform, Inverse Z transf  | form using partial   |  |  |  |  |
| raction and                                                                                        | power series method                                     |                          |                      |  |  |  |  |
| Unit III                                                                                           | Discrete Fourier Transform                              | (06hrs)                  | CosMapped<br>CO3,CO4 |  |  |  |  |
| Definition an                                                                                      | nd Properties of DFT, Circular convolution, Linea       | r convolution using cir  | cular convolution    |  |  |  |  |
| ast Fourier                                                                                        | Transform: Radix 2 DIT and DIF algorithms               | -                        |                      |  |  |  |  |
|                                                                                                    |                                                         |                          |                      |  |  |  |  |

| UnitIV | Structure of IIR | (07hrs) | COs Mapped<br>– CO5 |
|--------|------------------|---------|---------------------|
|        |                  |         |                     |

Advantages and disadvantages of digital filter over analog filters, classification of digital filters: FIR and IIR, design of analog low pass Butterworth filter, Chebyshev filter, design of IIR filters from analog filters using bilinear transformation, impulse invariance.

| Unit V | Symmetric | & Anti-sy | mmet | ric FIF | R filt | ers |  | (07hr | s) | CC<br>-C | Os Mapped<br>2O5 | l |
|--------|-----------|-----------|------|---------|--------|-----|--|-------|----|----------|------------------|---|
|        |           |           | 011  | ****    |        |     |  |       |    |          |                  |   |

Introduction to FIR filters, Linear phase filter – Windowing techniques – rectangular, triangular, Blackman and Kaiser windows – Frequency sampling techniques – Structure for FIR systems.

#### **Course Mapping:**

| Unit | Content                       | Blooms<br>Taxonomy<br>Level | CO<br>mapped | PO<br>mapped | PSO<br>mapped |
|------|-------------------------------|-----------------------------|--------------|--------------|---------------|
| Ι    | Introduction to Discrete Time | 2                           | 1,2          | 1,2          | 1             |
|      | Signals and Systems           |                             |              |              |               |
| II   | Frequency analysis of         | 2,3                         | 1,2,3        | 1,2          | 1             |
|      | discrete time signals         |                             |              |              |               |
| III  | Discrete Fourier Transform    | 3,4                         | 3,4          | 1,2,3,4,5    | 1             |
| IV   | Structure of IIR              | 3                           | 5            | 1,2,3,4,5    | 1             |
| V    | Symmetric & Anti-symmetric    | 3                           | 5            | 1,2,3,4,5    | 1,2           |
|      | FIR filters                   |                             |              |              |               |

#### **Text Books**

[T1] Proakis J. G and D. G. Manolakis, "Digital Signal processing, Principles, Algorithms and Applications", Prentice Hall of India.

[T2]Mitra S., "Digital Signal Processing: A Computer Based Approach", Tata McGraw-Hill, 1998, ISBN 0-07-044705-5

[T3]P.Ramesh Babu "Digital Signal Processing" 4th Edition, Scitech Publication, Chennai

[T2] Johnson J. R, "Introduction to Digital Signal Processing", Prentice Hall of India.

[T3] Rabiner, Gold, "Theory and Applications of Digital Signal Processing", Tata McGraw Hill.[T4] E. C. Ifeachor& B. W. Jarvis, "Digital Signal Processing- A Practical Approach", Pearson Education, New Delhi

[R1] Oppenheim A., Schafer R., Buck J., "Discrete time signal processing", 2nd Edition, Prentice Hall, 2003, ISBN-81-7808-244-6

[R2] Rebizant, Waldemar, Szafran, Janusz, Wiszniewski, Andrzej, "Digital Signal Processing in Power System Protection and Control", 1st Edition. Springer, 2011, ISBN 0857298011, 9780857298010

| Guidelines for Continuous Comprehensive Evaluation of Theory Course |                                                                      |                   |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|--|--|--|
| Sr No.                                                              | Components for Continuous Comprehensive Evaluation                   | Marks<br>Allotted |  |  |  |
| 1                                                                   | Timely Submission of Assignments                                     | 10                |  |  |  |
|                                                                     | (Total 3Assignment, Unit I and II 20marks, Unit III and IV20marksand |                   |  |  |  |
|                                                                     | Unit V10 marks &50 marks will be converted to 10 Marks)              |                   |  |  |  |
| 2                                                                   | Tests on each unit using LMS                                         | 10                |  |  |  |
|                                                                     | (Each test for 15 M and total will be converted out of 10M)          |                   |  |  |  |

#### T. Y. B. Tech. Pattern 2022 Semester: V Course Code : ROB223007 Course Name: Elective 1 (A)Python Programming Lab

| Teaching Scheme:         | Credit<br>Scheme: | Examination Scheme:                          |
|--------------------------|-------------------|----------------------------------------------|
| Practical: 02 hrs. /week | 01                | Term work : 25 Marks<br>Practical : 25 Marks |

**Prerequisite Courses:** students are expected to have a good understanding of basic computer principles.

| Course Obje | ctives:                                                                 |
|-------------|-------------------------------------------------------------------------|
| Course      | Description                                                             |
| Objectives  |                                                                         |
| 1           | To understand problem solving, problem solving aspects, programming and |
|             | to know about various program design tools.                             |
| 2           | To learn problem solving with computers                                 |
| 3           | To learn basics, features and future of Python programming.             |
| 4           | To acquaint with data types, input output statements, decision making,  |
|             | looping and                                                             |
| 5           | To learn features of Object Oriented Programming using Python           |

#### **Course Outcomes:**

| Course   | Description                                                                  |
|----------|------------------------------------------------------------------------------|
| Outcomes |                                                                              |
| 1        | Inculcate and apply various skills in problem solving                        |
| 2        | Choose most appropriate programming constructs and features to solve the     |
|          | problems in diversified domains.                                             |
| 3        | Exhibit the programming skills for the problems those require the writing of |
|          | well documented programs including use of the logical constructs of          |
|          | language, Python.                                                            |
| 4        | Demonstrate significant experience with the Python program development       |
|          | environment                                                                  |
| 5        | Inculcate and apply various skills in problem solving                        |
|          |                                                                              |

#### **Course context, Relevance, Practical Significance:**

The Python programming course introduces students to the fundamentals of Python language, covering topics such as basic syntax, decision control statements, functions, modules, strings, dictionaries, and object-oriented programming (OOP). Through this course, students gain practical skills in writing and executing Python programs, making decisions using control statements, defining and using functions and modules, manipulating strings and dictionaries, and implementing OOP concepts like classes, objects, and inheritance. Python's simplicity, versatility, and extensive libraries make it a valuable tool across various domains such as software development, data science, web development, and automation, making this course highly relevant for students aiming to build a strong foundation in programming for real-world applications.

#### **Course Contents:**

| Sr.<br>No. | Contents                                   | Pr.<br>Hrs. |
|------------|--------------------------------------------|-------------|
| 1          | Basics of Python Programming               | 2           |
| 2          | Programs using Decision Control Statements | 2           |
| 3          | Programs using Functions and Modules       | 2           |
| 4          | Programs using Strings                     | 2           |
| 5          | Programs using Dictionaries                | 2           |
| 6          | Programs using Object Oriented Programming | 2           |
| 7          | Mini project                               | 2           |

# **Course Mapping:**

| Assignment/<br>Experiment | Contents                                      | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|---------------------------|-----------------------------------------------|---------------|--------------|---------------|
| 1                         | Basics of Python Programming                  | 1             | 1,2          | -             |
| 2                         | Programs using Decision Control Statements    | 2             | 1,2          | -             |
| 3                         | Programs using Functions and Modules          | 2             | 1,2          | -             |
| 4                         | Programs using Strings                        | 3             | 1,2          | -             |
| 5                         | Programs using Dictionaries                   | 3             | 1,2          | -             |
| 6                         | Programs using Object Oriented<br>Programming | 4             | 1,2          | -             |
| 7                         | Mini project                                  | 1,2,3,4       | 1,2          | -             |

| T. Y. B. Tech.<br>Robotics and Automation<br>Pattern 2022, Semester: V<br>ROB223006: Subject Name: Elective I Reverse Engineering Lab |                                                                               |        |       |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------|-------|--|
| Teaching Sch                                                                                                                          | Teaching Scheme:     Credit     Examination Scheme:       Scheme:     Scheme: |        |       |  |
| Practical:02h                                                                                                                         | Practical:02hrs./week 02 Term work : 25Marks<br>Oral :25 Marks                |        |       |  |
| Prerequisite (                                                                                                                        | Courses: Engineering Mec                                                      | hanics |       |  |
| Course Objec                                                                                                                          | tives:                                                                        |        |       |  |
| Course                                                                                                                                |                                                                               | Descri | ption |  |
| Objectives                                                                                                                            | The course aims :                                                             |        |       |  |
| 1                                                                                                                                     | Understand the problem in the existing process.                               |        |       |  |
| 2                                                                                                                                     | Collect the large number of data/ information for the product                 |        |       |  |
| 3                                                                                                                                     | Analyze of the products and extraction of real time data.                     |        |       |  |

| Course   | Description                                              | Blooms Level |
|----------|----------------------------------------------------------|--------------|
| Outcomes | On completion of the course, students will be able to–   |              |
| CO1      |                                                          | 2 Understand |
|          | Understand the problem in the existing process           |              |
| CO2      | Understand the ways to redesign and improve the          | 2 Understand |
|          | performance of the system.                               |              |
| CO3      | Understand the principles behind the design of the       | 2 Understand |
|          | product                                                  |              |
| CO4      | Analyze of the products and extraction of real time data | 4-Analyze    |

**Course context, Relevance, Practical Significance:** The objective of the module is to go through the Reverse Engineering process as it is a selflearning tool used to summarize the process of reconstructing/ reformation of an already existing object.

# Course Contents: (Perform any 7)

| Assignment/<br>Experime<br>nt | Contents                                                                   | Pr.Hrs. |
|-------------------------------|----------------------------------------------------------------------------|---------|
| 1                             | Study of static and dynamic program analysis concepts and terminology      | 2       |
| 2                             | Study of steps into reverse engineer software                              | 2       |
| 3                             | Study of mechanisms which makes reverse engineering tasks more challenging | 2       |
| 4                             | Study of Selection of a Reverse Engineering System                         | 2       |
| 5                             | Study of Rapid prototyping for Reverse Engineering                         | 2       |
| 6                             | Study of Integration of RE and RP for Layer-based Model Generation         | 2       |

# **Course Mapping:**

| Experi<br>ment | Contents                                                                   | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|----------------|----------------------------------------------------------------------------|---------------|--------------|---------------|
| 1              | Study of static and dynamic program analysis                               | 1,2           | 1,2          | 1             |
| 2              | Study of steps into reverse engineer software                              | 1,2           | 1,2          | 1             |
| 3              | Study of mechanisms which makes reverse engineering tasks more challenging | 2             | 1,2,3,4      | 1             |
| 4              | Study of Selection of a Reverse Engineering<br>System                      | 2,3           | 1,2,4        | 1             |
| 5              | Study of Rapid prototyping for Reverse<br>Engineering                      | 2,3           | 1,2          | 1             |
| 6              | Study of Integration of RE and RP for Layer-<br>based Model Generation     | 2             | 1,2          | 1             |

| T. Y. B. Tech.<br>Pattern 2022 Semester: VI<br>Course Code : ROB223017<br>Course Name : Elective II (C) JAVA Programming Lab |                                                                         |                  |                                     |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|-------------------------------------|
| Teaching Sci                                                                                                                 | neme:                                                                   | Scheme:          | Examination Scheme:                 |
| Practical: 02                                                                                                                | Practical: 02 hrs. /week01Term work : 25 marks<br>Practical : 25 Marks  |                  |                                     |
| Prerequisite                                                                                                                 | Courses:                                                                |                  |                                     |
| Course Obje                                                                                                                  | ctives:                                                                 |                  |                                     |
| Course                                                                                                                       |                                                                         | Desci            | ription                             |
| Objectives                                                                                                                   |                                                                         |                  |                                     |
| 1                                                                                                                            | Make the students familiar with basic concepts and techniques of object |                  |                                     |
|                                                                                                                              | oriented programming in Java.                                           |                  |                                     |
| 2                                                                                                                            | Develop an ability to                                                   | write various pr | ograms in Java for problem solving. |

#### **Course Outcomes:**

| Course<br>Outcomes | Description                                                          |
|--------------------|----------------------------------------------------------------------|
| 1                  | Understand the basic principles of Java programming language         |
| 2                  | Apply the concepts of classes and objects to write programs in Java  |
| 3                  | Demonstrate the concepts of methods & Inheritance                    |
| 4                  | Use the concepts of interfaces & packages for program implementation |
| 5                  | Understand multithreading and Exception handling in Java to develop  |
|                    | robust programs                                                      |

#### **Course context, Relevance, Practical Significance:**

The course covers Java fundamentals including object-oriented concepts, classes, methods, inheritance, interfaces, packages, multithreading, and exception handling. It emphasizes practical application and relevance in software development, providing students with essential skills for creating versatile and scalable applications. Mastering Java is crucial for aspiring software developers, enabling them to build robust and platform-independent solutions, thus enhancing their career prospects in the technology sector

### **Course Contents:**

| Sr.<br>No. | Contents                                                                  | Pr.<br>Hrs. |
|------------|---------------------------------------------------------------------------|-------------|
| 1          | Write some simple programs in Java such as:                               | 2           |
|            | i) To find factorial of number.                                           |             |
|            | ii) To display first 50 prime numbers.                                    |             |
|            | iii) To find sum and average of N numbers                                 |             |
| 2          | Write a program in Java to implement a Calculator with simple             | 2           |
|            | arithmetic operations such as add, subtract, multiply, divide, factorial  |             |
|            | etc. using switch case and other simple java statements. The objective    |             |
|            | of this assignment is to learn Constants, Variables, and Data Types,      |             |
|            | Operators and Expressions, Decision making statements in Java.            | 2           |
| 3          | Write a program in Java with class Rectangle with the data fields         | 2           |
|            | width, length, area and colour. The length, width and area are of         |             |
|            | double type and colour is of string type. The methods are get_length(),   |             |
|            | get_width(), get_colour() and lind_area(). Create two objects of          |             |
|            | hoth are the same for the objects then display." Metabing Destenglas?     |             |
|            | otherwise display "Non matching Rectangle"                                |             |
| 4          | Write a program in IAVA to demonstrate the method and constructor         | 2           |
| -          | overloading                                                               | 2           |
|            | overrouding                                                               |             |
| 5          | Write Programs in Java to sort i) List of integers ii) List of names. The | 2           |
| _          | objective of this assignment is to learn Arrays and Strings in Java       | _           |
| 6          | Write a Program in Java to add two matrices. The objective of this        | 2           |
|            | assignment is to learn Arrays in Java                                     |             |
| 7          | Write a program in Java to create a player class. Inherit the classes     | 2           |
|            | Cricket player, Football player and Hockey player from player class.      |             |
|            | The objective of this assignment is to learn the concepts of inheritance  |             |
|            | in Java                                                                   |             |
| 8          | Write a program to create multiple threads and demonstrate how two        | 2           |
|            | threads communicate with each other.                                      |             |
| 9          | Write a java program in which data is read from one file and should be    | 2           |
|            | written in another file line by line.                                     |             |
| 10         | A Mini project in Java: A group of 4 students can develop a small         | 2           |
|            | application in Java                                                       |             |

# **Course Mapping:**

| Assignment/<br>Experiment | Conte<br>nts                           | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|---------------------------|----------------------------------------|---------------|--------------|---------------|
| 1                         | Write some simple programs in Java     | 1             | 1,2          | _             |
|                           | such as:                               |               |              |               |
|                           | i) To find factorial of number.        |               |              |               |
|                           | ii) To display first 50 prime numbers. |               |              |               |
|                           | iii) To find sum and average of N      |               |              |               |
|                           | numbers                                |               |              |               |
| 2                         | Write a program in Java to implement   | 1             | 1,2          | -             |
|                           | a Calculator with simple arithmetic    |               |              |               |
|                           | operations such as add, subtract,      |               |              |               |
|                           | multiply, divide, factorial etc. using |               |              |               |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 0   |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|
|    | switch case and other simple java<br>statements. The objective of this<br>assignment is to learn Constants,<br>Variables, and Data Types, Operators<br>and Expressions, Decision making<br>statements in Java.                                                                                                                                                                                                                                                                                         |   |     |   |
| 3  | Write a program in Java with class<br>Rectangle with the data fields width,<br>length, area and colour. The length,<br>width and area are of double type and<br>colour is of string type. The methods<br>are get_length(), get_width(),<br>get_colour() and find_area(). Create<br>two objects of Rectangle and compare<br>their area and colour. If the area and<br>colour both are the same for the<br>objects then display "Matching<br>Rectangles", otherwise display "Non-<br>matching Rectangle" | 2 | 1,2 | _ |
| 4  | Write a program in JAVA to<br>demonstrate the method and<br>constructor overloading                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 | 1,2 | - |
| 5  | Write Programs in Java to sort i) List<br>of integers ii) List of names. The<br>objective of this assignment is to learn<br>Arrays and Strings in Java                                                                                                                                                                                                                                                                                                                                                 | 2 | 1,2 | _ |
| 6  | Write a Program in Java to add two<br>matrices. The objective of this<br>assignment is to learn Arrays in Java                                                                                                                                                                                                                                                                                                                                                                                         | 3 | 1,2 | - |
| 7  | Write a program in Java to create a<br>player class. Inherit the classes<br>Cricket_player, Football_player and<br>Hockey_player from player class. The<br>objective of this assignment is to learn<br>the concepts of inheritance in Java                                                                                                                                                                                                                                                             | 3 | 1,2 | - |
| 8  | Write a program to create multiple<br>threads and demonstrate how two<br>threads communicate with each other.                                                                                                                                                                                                                                                                                                                                                                                          | 4 | 1,2 | - |
| 9  | Write a java program in which data is<br>read from one file and should be<br>written in another file line by line.                                                                                                                                                                                                                                                                                                                                                                                     | 4 | 1,2 | - |
| 10 | A Mini project in Java: A group of 4<br>students can develop a small<br>application in Java                                                                                                                                                                                                                                                                                                                                                                                                            | 5 | 1,2 | - |

|                                                                                                        | T. Y. B. Tech.                                      |                 |                                          |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|------------------------------------------|--|
|                                                                                                        | <b>Robotics and Automation Pattern2022,</b>         |                 |                                          |  |
|                                                                                                        | Semester: V                                         |                 |                                          |  |
|                                                                                                        | ROB223007D:Electi                                   | ve I(D): Digita | ll Signal Processing Lab                 |  |
| Teaching Sche                                                                                          | Teaching Scheme:     Credit     Examination Scheme: |                 |                                          |  |
|                                                                                                        |                                                     | Scheme:         |                                          |  |
| Practical:02hr                                                                                         | s./week                                             | 02              | Term work :25 Marks                      |  |
|                                                                                                        |                                                     |                 | Oral :25 Marks                           |  |
|                                                                                                        |                                                     |                 |                                          |  |
| Prerequisite C                                                                                         | ourses: Mathematics, Fourier                        | series, Fourie  | r transform, Z transform                 |  |
| <b>Course Object</b>                                                                                   | ives:                                               |                 |                                          |  |
| Course                                                                                                 |                                                     | Descri          | ption                                    |  |
| Objectives                                                                                             | The course aims :                                   |                 |                                          |  |
| 1. Understand basics of digital signals and systems and understand the basic mathematical tools needed |                                                     |                 |                                          |  |
| for the analysis of discrete systems                                                                   |                                                     |                 |                                          |  |
| 2.Analyze discre                                                                                       | te signals as well as discrete s                    | ystems in freq  | uency domain and apply related numerical |  |
| analysis for the s                                                                                     | same.                                               |                 |                                          |  |

3. Understand the basics of filter design with clear understanding of the notion of digital filtering which includes FIR and IIR filters

| Course   | Description                                                                             | Blooms Level    |
|----------|-----------------------------------------------------------------------------------------|-----------------|
| Outcomes | On completion of the course, students will be able to-                                  |                 |
| CO1      | Classify discrete time signal and system and determine Z and inverse Z-transform of DTS | 2-Understanding |
| CO2      | Recognize types of discrete-time signals and properties of discrete-time systems.       | 2-Understanding |
| CO3      | Compute the response of discrete-time systems to various input signals.                 | 3-Apply         |
| CO4      | Evaluate and analyze the frequency domain characteristics of Discrete-Time Systems      | 4-Analyze       |
| CO5      | Design and implement different frequency selective FIR and IIR filters.                 | 3-Apply         |

#### **Course context, Relevance, Practical Significance:**

In the context of robotic engineering, Digital Signal Processing (DSP) plays a crucial role in various aspects of robot design, control, perception, and interaction with the environment. Robots rely on various sensors such as cameras, lidar, ultrasonic sensors, and inertial measurement units (IMUs) to perceive their environment. DSP techniques are used to process and interpret sensor data, enabling robots to extract meaningful information for navigation, object detection, and obstacle avoidance. DSP opens avenues for research and innovation in robotics, enabling the development of novel algorithms, sensors, and control strategies to address emerging challenges and applications in fields such as service robotics, aerial robotics, and soft robotics.

Course Contents: Students are expected to perform minimum Seven experiments:

| Assignment/<br>Experime<br>nt | Contents                                                                                                                                                                    | Pr.Hrs. |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1                             | Generate the discrete-time standard test signals viz. impulse, unit step, ramp, parabolic, exponential and sinusoidal signal.                                               | 2       |
| 2                             | Implement the basic operations on the given signals.                                                                                                                        | 2       |
| 3                             | Implement Linear Convolution of the given two discrete time sequences.                                                                                                      | 2       |
| 4                             | Obtain the transfer function and plot is pole-zero plot in z-<br>domain.                                                                                                    | 2       |
| 5                             | Find the DTFT of the given sequence and plot its magnitude and phase plot                                                                                                   | 2       |
| 6                             | Write a program to design and implement FIR filters using<br>windowing method for the given specifications.*(By Python or<br>Matlab)                                        |         |
| 7                             | Write a Program to design and implement digital IIR filter using<br>Butterworth approximations for the given specifications of a low-<br>pass filter.*(By Python or Matlab) | 2       |
| 8                             | Write a Program to design and implement digital IIR filter using<br>Chebyshev approximations for the given specifications of a low-<br>pass filter.*(By Python or Matlab)   | 2       |

# **Course Mapping: (Perform any 5)**

| Assignmen<br>t/ | Contents                                                                                                                                | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|
| Experimen<br>t  |                                                                                                                                         |               |              |               |
| 1               | Generate the discrete-time standard test<br>signals viz. impulse, unit step, ramp,<br>parabolic, exponential and sinusoidal<br>signal.  | 1,2           | 1,2          | 1             |
| 2               | Implement the basic operations on the given signals.                                                                                    | 1,2           | 1,2          | 1             |
| 3               | Implement Linear Convolution of the given two discrete time sequences.                                                                  | 3             | 1,2          | 1             |
| 4               | Obtain the transfer function and plot is pole-zero plot in z-domain.                                                                    | 2             | 1,2          | 1             |
| 5               | Find the DTFT of the given sequence<br>and plot its magnitude and phase plot                                                            | 3             | 1,2          | 1             |
| 6               | Write a program to design and implement<br>FIR filters using windowing method for<br>the given specifications.*(By Python or<br>Matlab) | 5             | 1,2          | 1             |

| 7 | Write a Program to design and implement<br>digital IIR filter using Butterworth<br>approximations for the given<br>specifications of a low-pass filter.*(By<br>Python or Matlab) | 5 | 1,2 | 1 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|
| 8 | Write a Program to design and<br>implement digital IIR filter using<br>Chebyshev approximations for the given<br>specifications of a low-pass filter.*(By<br>Python or Matlab)   | 5 | 1,2 | 1 |

\*\*\*\*\*\*\*

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                |                                                                                                                                       | T. Y. B. Tech.<br>Pattern 2022 Semester                                                                              | :: V                                                                                              |                              |                                         |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|--|--|--|
|                                                | Course Code : R                                                                                                                       | DB223008 Course N                                                                                                    | Name: Data A                                                                                      | nalytic                      | 2S                                      |  |  |  |
| Teaching                                       | Credit Scheme:Examination Scheme:                                                                                                     |                                                                                                                      |                                                                                                   |                              |                                         |  |  |  |
| Theory :                                       | 03hrs/week                                                                                                                            | 03                                                                                                                   | 03 Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks |                              |                                         |  |  |  |
| Prerequis                                      | ite Courses: - Statistics                                                                                                             | I                                                                                                                    |                                                                                                   |                              |                                         |  |  |  |
| Course (                                       | Objectives:                                                                                                                           |                                                                                                                      |                                                                                                   |                              |                                         |  |  |  |
| 1. De<br>2. Ma<br>3. Un<br>rec<br>4. Ga<br>dat | aster basic and inferential st<br>aderstand and apply advance<br>cognition.<br>in practical experience in ap<br>tasets and scenarios. | ng and preprocessing data<br>atistical methods for data<br>ed analytics techniques for<br>oplying data analytics too | a from various<br>analysis.<br>or predictive mo<br>ols and method                                 | source<br>odelinį<br>ologies | es.<br>g and pattern<br>s to real-world |  |  |  |
| Course                                         | Jutcomes: On completion of                                                                                                            | of the course, students wi                                                                                           | Il be able to                                                                                     |                              | Ploom's Loval                           |  |  |  |
| CO1                                            | Demonstrate specialist kno<br>analytical methods are use                                                                              | owledge of how a range of to inform decision mak                                                                     | of data sources<br>king across mul                                                                | and<br>ltiple                | 2-Understanding                         |  |  |  |
| CO2                                            | Demonstrate familiarity w<br>programming languages to<br>analyses.                                                                    | ith the use of appropriate<br>manipulate data and per                                                                | contemporary<br>form statistica                                                                   | 1                            | 3- Apply                                |  |  |  |
| CO3                                            | Select and apply contempo<br>investigate social, policy,                                                                              | orary data analytics resea<br>scientific and organizatio                                                             | rch techniques onal problems.                                                                     | to                           | 3- Apply                                |  |  |  |
| CO4                                            | Synthesize insights from a solutions to complex prob                                                                                  | range of analyses to dev<br>lems.                                                                                    | elop evidence-                                                                                    | based                        | 4-Analyze                               |  |  |  |
|                                                |                                                                                                                                       | COURSE CONTENT                                                                                                       | ſS                                                                                                |                              |                                         |  |  |  |
| Unit I                                         | Introduction                                                                                                                          | n to data analytics                                                                                                  | (7hrs)                                                                                            | C<br>C                       | cos Mapped<br>CO1                       |  |  |  |
| Significan<br>transforma                       | ce & applications of data tion, data integration, data                                                                                | ta analytics, Data col visualization, basic statis                                                                   | llection, data stics, inferentia                                                                  | proce<br>al statis           | ssing, data<br>stics                    |  |  |  |
| Unit II                                        | Descriptive                                                                                                                           | analytics                                                                                                            | (7hrs)                                                                                            | (7hrs) Cos Mapped<br>CO2     |                                         |  |  |  |
| Uni-variat<br>variance(A                       | e/multi-variate statistics,<br>ANOVA)                                                                                                 | bi-variate associations,                                                                                             | correlations,                                                                                     | cova                         | riance, analysis of                     |  |  |  |
| Unit<br>III                                    | Predictive analytics(7hrs)Cos MappedCO3                                                                                               |                                                                                                                      |                                                                                                   |                              |                                         |  |  |  |

III

| Unit<br>IV                                                                                                                                                                                                                | Classification techniques                                        | (7hrs)       | Cos Mapped<br>CO3           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|-----------------------------|--|--|--|--|--|
| Linear classifiers, Quadratic classifiers, Support vector machines, Random forests.                                                                                                                                       |                                                                  |              |                             |  |  |  |  |  |
| Unit V                                                                                                                                                                                                                    | Prescriptive analytics                                           | (7hrs)       | Cos Mapped<br>CO4           |  |  |  |  |  |
| Decision tree analysis, Expert system, principal component analysis, genetic algorithms                                                                                                                                   |                                                                  |              |                             |  |  |  |  |  |
|                                                                                                                                                                                                                           | Text Books                                                       |              |                             |  |  |  |  |  |
| 3 Ac<br>IS                                                                                                                                                                                                                | harya Seema and Chellappan, Big Data and Ana<br>BN:9788126554782 | alytics, Wil | ley India Pvt. Ltd. (2015), |  |  |  |  |  |
|                                                                                                                                                                                                                           | Reference Books                                                  |              |                             |  |  |  |  |  |
| <ol> <li>Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and<br/>Presenting Data, EMC Education Services, Willey India Pvt. Ltd. (2016), ISBN:<br/>978-1-118-87622-0</li> </ol>                  |                                                                  |              |                             |  |  |  |  |  |
| <ol> <li>978-1-118-87622-0</li> <li>Michael Minelli, Michale Chambers, Ambiga Dhiraj, Big Data Analytics: Emerging<br/>Business Intelligence and analytics trends for today's business, Willey India Pvt. Ltd.</li> </ol> |                                                                  |              |                             |  |  |  |  |  |

| Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |   |    |    |    |      |      |
|---------------------------|----|---|---|---|---|---|---|---|---|----|----|----|------|------|
|                           | PO |   |   |   |   |   |   |   |   |    |    |    |      |      |
|                           | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | PSO1 | PSO2 |
| CO1                       | 2  | - | 2 | 2 | 3 | - | - | 2 | 2 | 3  | -  | 2  |      | -    |
| CO2                       | 2  | - | 1 | 1 | 3 | - | - | 2 | 2 | 3  | -  | 2  | -    | -    |
| CO3                       | 2  | - | 2 | 3 | 3 | 3 | - | 2 | 2 | 3  | -  | 3  | -    | -    |
| CO4                       | 2  | - | 3 | 3 | 3 | 3 | - | 2 | 2 | 3  | -  | 3  | -    | -    |

| <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b> |                                                           |                       |  |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|--|--|--|--|--|
| Sr. No.                                                                    | <b>Components for Continuous Comprehensive Evaluation</b> | <b>Marks Allotted</b> |  |  |  |  |  |
| 1                                                                          | Assignments on each Unit                                  | 10                    |  |  |  |  |  |
| 2                                                                          | LMS Test on Each Unit                                     | 10                    |  |  |  |  |  |
|                                                                            | Total                                                     | 20                    |  |  |  |  |  |

#### K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| T. Y. B. Tech. Robotics and Automation<br>Pattern 2022, Semester: V<br>ROB2312309 : Name of Subject: Financial Management                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                              |               |  |               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|--|---------------|--|--|--|
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Teaching Scheme:Credit Scheme:Examination Scheme:                                                                               |                                              |               |  |               |  |  |  |
| Theory :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02 hrs/week                                                                                                                     | 02                                           | CCE: 50 Marks |  |               |  |  |  |
| Prerequi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | site Courses:                                                                                                                   |                                              |               |  |               |  |  |  |
| <ul> <li>To provide thorough grounding of financial management concepts and preparation of Financial Statements with their analysis.</li> <li>To gain expert knowledge of principles and concepts used in finance</li> <li>To learn to manage short-term resources of a business firm</li> <li>To be able to find out the best course of action among several financial options</li> <li>To help understand costing and management accounting techniques that could be utilized for decision making and control.</li> </ul> |                                                                                                                                 |                                              |               |  |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 | Course Outcomes                              |               |  | Bloom's Level |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Explain Financial Statements                                                                                                    | : Balance sheet, profit and                  | loss account  |  | 2. Understand |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Apply capital budgeting tech                                                                                                    | niques and evaluate their li                 | imitations    |  | 3. Apply      |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO3Demonstrate how materials, labor and overhead costs are added to a product at<br>each stage of the production cycle.3. Apply |                                              |               |  |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 | COURSE CONTEN                                | ГS            |  |               |  |  |  |
| Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Financial Ma                                                                                                                    | inancial Management (08 hrs) COs Mapped: CO1 |               |  |               |  |  |  |
| inancial function, Scope, goals and tools. Sources of finance, corporate planning and financial management.<br>inancial Statements: Balance sheet, profit and loss account. Ratio Analysis: Classification, Ratio Analysis and its                                                                                                                                                                                                                                                                                          |                                                                                                                                 |                                              |               |  |               |  |  |  |

limitations. Operating and Financial Leverage.

| Unit II       | Capital Budgeting and Working Capital<br>Management   | d Working Capital (08 hrs) COs Map<br>CO2 |                             |  |
|---------------|-------------------------------------------------------|-------------------------------------------|-----------------------------|--|
| Control of Ca | pital Expenditure, Evaluation Process-Payback appro   | bach, Accounting                          | of Rate of Return, Present  |  |
| Value Method  | Vs Internal Rate of Return. Replacement cost and disc | counted cash flow.                        |                             |  |
| Concept and   | design of Working Capital, types of working capital   | l, sources of wor                         | king capital, time value of |  |
| money, cost a | nd capital, cost of capital. Funds Flow Analysis: Con | ncepts, Objectives                        | , and Techniques of Funds   |  |
| Flow Statemer | nt.                                                   |                                           | *                           |  |
| Unit III      | Costing and Cost Control                              | (08 hrs)                                  | COs Mapped:<br>CO3          |  |

Methods of costing and elements of cost, Depreciation: Concept, importance and different methods of depreciation. Estimation of material, machining and labour cost machining, Overheads: Classification, collection of overheads, Primary and Secondary apportionment of overheads, and absorption of overheads. Machine hour and labour hour rate. Under and over absorption of overheads. Estimation of overheads. Costing methods: marginal Costing, Activity based costing

Cost control: Capital cost control-the nature of control, elements of cost control programme, project planning and scheduling, cost reporting and corrective action. Capital cost control repetitive operating cost, standard costs, cost reporting and corrective action.

#### **Reference Books**

- 1 Khan M. Y., Jain P. K., Basic Financial Management, Tata McGraw Hill, Delhi, 2005.
- 2 Chandra, Prasanna. Financial Management, Tata McGraw Hill, Delhi.
- 3 Bhabatosh Banerjee, Fundamentals of Financial Management, PHI, Delhi, 2010
- 4 Chandra Bose D, Fundamentals of Financial Management, PHI, Delhi, 2010
- 5 Preeti Singh, Fundamentals of Financial Management, Ane, 2011.

| Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |   |    |    |    |
|---------------------------|----|---|---|---|---|---|---|---|---|----|----|----|
|                           | РО |   |   |   |   |   |   |   |   |    |    |    |
|                           | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       |    | 1 | 1 |   |   | 2 |   |   |   | 1  | 3  | 1  |
| CO2                       |    | 1 | 1 |   |   | 2 |   |   |   | 1  | 3  | 1  |
| CO3                       |    | 1 | 1 |   |   | 2 |   |   |   | 1  | 3  | 1  |

| Guidelines for Continuous Comprehensive Evaluation of Theory Course |                                                                |          |  |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------|----------|--|--|--|--|--|
| Sr. No.                                                             | : No. Components for Continuous Comprehensive Evaluation       |          |  |  |  |  |  |
|                                                                     |                                                                | Allotted |  |  |  |  |  |
| 1                                                                   | Tests on each unit using LMS                                   | 30       |  |  |  |  |  |
|                                                                     | (Each test for 20 M and total will be converted out of 30 M)   |          |  |  |  |  |  |
| 2                                                                   | Timely Assignments Submission on each unit (5 M for each unit) | 20       |  |  |  |  |  |

| T. Y. B. Tech. Robotics and Automation<br>Pattern 2022 Semester: VI<br>ROB223010: Name of Subject: Seminar |    |                                            |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----|--------------------------------------------|--|--|--|--|--|
| Teaching Scheme:         Credit Scheme:         Examination Scheme:                                        |    |                                            |  |  |  |  |  |
| Practical :02 hrs/week<br>Tutorial : 01 hr/week                                                            | 02 | Term work: 25 Marks<br>Tutorial : 25 marks |  |  |  |  |  |
| Prerequisite Courses, if any: -                                                                            |    |                                            |  |  |  |  |  |

1. The objective of Seminar is to test the student on his/her ability for self-study and his/her ability to communicate - Written and oral.

2. Seminar will be in the form of a report submitted by the student:

a) On topic of his/her choice based on literature survey/ a case study wherever applicable/possible, and approved by the staffin- charge.

b) A report with 20-25 pages of A-4 size paper, 1.5 spaced typed material, and appropriately bound. c) Title font/figures/graphs shall be black and white.
# K. K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                                  | Robotics<br>ROB223011                                                                                                                                                                         | F. Y. B. Tech.<br>s and Automation (Patte<br>Semester: VI<br>: Name of Subject: Sen                             | ern 2022)<br>sor Technology                                                                  |                                                                                           |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Teaching                                                         | g Scheme:                                                                                                                                                                                     | Credit Scheme:                                                                                                  | Examination Sche                                                                             | me:                                                                                       |  |  |
| Theory:0                                                         | )3hrs/week                                                                                                                                                                                    | 03                                                                                                              | CCE: 20Marks<br>In Sem Exam: 20 Marks<br>EndSemExam:60Marks                                  |                                                                                           |  |  |
| Prerequi<br>1. Basic F                                           | <b>site Courses:</b> -<br>Electrical Engineering 2. Ba                                                                                                                                        | sic Electronics Engineeri                                                                                       | ng                                                                                           |                                                                                           |  |  |
| 1. Far<br>2. Ma<br>3. Exj<br>4. Ex;<br>5. Exj                    | miliarity with sensor princip<br>ster Sensor interfacing and<br>plore Sensor Fusion and Inte<br>amine Applications of Sense<br>plore Emerging Trends and<br><b>Dutcomes:</b> On completion of | les and Technologies<br>signal conditioning<br>egration<br>or Technology<br>Future Directions                   | ll be able to-                                                                               |                                                                                           |  |  |
|                                                                  |                                                                                                                                                                                               | Course Outcomes                                                                                                 |                                                                                              | Bloom's Level                                                                             |  |  |
| CO1                                                              | Explain the underlying principles of sensor operation in robotics and 2- Unders automation                                                                                                    |                                                                                                                 |                                                                                              |                                                                                           |  |  |
| CO2                                                              | Understand the role of set<br>industrial automation, auto                                                                                                                                     | nsors in various robotic<br>momous navigation, and                                                              | applications such as manipulation tasks.                                                     | 2- Understanding                                                                          |  |  |
| CO3                                                              | Use sensor data to solintegration, calibration, and                                                                                                                                           | lve practical problems<br>d troubleshooting in robo                                                             | related to sensor<br>tic systems                                                             | 3-Apply                                                                                   |  |  |
| CO4                                                              | Analyze sensor data to eva<br>sensors in specific robotic                                                                                                                                     | luate the performance an tasks and environments                                                                 | d reliability of                                                                             | 4-Analyze                                                                                 |  |  |
| CO5                                                              | Develop the ability to ana specific robotic tasks and e                                                                                                                                       | lyze and assess the suita<br>environments.                                                                      | ability of sensors for                                                                       | 4- Analyze                                                                                |  |  |
|                                                                  |                                                                                                                                                                                               | COURSE CONTENI                                                                                                  | .8                                                                                           |                                                                                           |  |  |
| Unit I                                                           | Introduction to Sense                                                                                                                                                                         | ors & Transducers                                                                                               | (07hrs)                                                                                      | COs Mapped -<br>CO1, CO2                                                                  |  |  |
| Introductic<br>sensors in<br>Measurem<br>Characteris<br>criteria | on to sensor Technologies<br>robotics and automation,<br>ent system Basic principles<br>stics of sensors: accuracy, p                                                                         | in Robotics, Definition<br>Role of Transducer in<br>s of sensor operation, Type<br>precision, resolution, sense | and classification<br>measurement Syste<br>ypes of sensors: cont<br>sitivity, etc., Overview | of sensors, Role of<br>ms, Block Diagram<br>act and non-contact,<br>w of sensor selection |  |  |

| Unit II                                                                    | Sensor Principles & Technolog                                                                                                                                                                                                                           | gies                                                                                                       | (08hr                                                                                             | COs Mapped -<br>CO1,<br>CO2.CO3                                                           |                                                                                                                 |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Types of<br>orientatic<br>sensors),<br>(temperat<br>of Resist<br>Ultrasoni | Sensors: Distance and proximity: Ultr<br>on: Encoders, gyroscopes, accelerometer<br>Inertial sensors (accelerometers, g<br>ture, humidity, gas)- Working principle<br>ive, Capacitive and Inductive sensors,<br>c sensors, Hall effect sensors, Compara | rasonic sensors<br>rs, Force/torque<br>yroscopes), T<br>& operation of<br>Optical sens<br>tive analysis of | s, LiDAR, in<br>e sensors, Vis<br>actile senso<br>f each sensor<br>ors (photodic<br>different sen | frared sense<br>sion sensors<br>rs, Enviro<br>, Basic Prir<br>odes, photo<br>nsor technol | ors. Position and<br>s (cameras, depth<br>nmental sensors<br>aciple of working<br>stransistors, etc.),<br>ogies |
| Unit<br>III                                                                | Sensor Interfacing & Signal Cor                                                                                                                                                                                                                         | nditioning                                                                                                 | (07hr                                                                                             | ·s)                                                                                       | COsMapped<br>-CO3,<br>CO4                                                                                       |
| Analog a<br>Lineariza<br>data, Prac                                        | nd digital sensor interfaces, Signal cond<br>tion, Analog-to-digital conversion (AD<br>ctical considerations in sensor interfacin                                                                                                                       | litioning techni<br>C) methods, Di<br>g and signal co                                                      | ques: Amplif<br>igital signal p<br>onditioning                                                    | fication, Filt                                                                            | tering,<br>DSP) for sensor                                                                                      |
| UnitIV                                                                     | Sensor Fusion and Integra                                                                                                                                                                                                                               | ition                                                                                                      | ( <b>07h</b> r                                                                                    | rs)                                                                                       | COs Mapped -<br>CO3,CO4,CO<br>5                                                                                 |
| Sensor fu<br>enhanced<br>Localizat<br>Navigatic                            | ision concepts and importance in robot<br>performance, Kalman filtering and oth<br>ion and mapping, Object tracking and ro<br>on and path planning. Feedback control                                                                                    | tics and autom<br>ner fusion algo<br>ecognition<br>systems                                                 | ation, Integra<br>rithms, Appl                                                                    | ation of mu<br>ications of                                                                | ltiple sensors for<br>sensor fusion in:                                                                         |
| Unit V                                                                     | Application of Sensor<br>Technology                                                                                                                                                                                                                     |                                                                                                            | (07hr                                                                                             | rs)                                                                                       | COs Mapped -<br>CO3,<br>CO4,CO5                                                                                 |
| Role of s<br>Position<br>localizati<br>Environn<br>utilizing<br>automatio  | ensors in robotics and automation system<br>and motion sensing in robotic man<br>on, Proximity sensors for obstacle avor<br>nental sensors for industrial automation<br>sensor feedback, Emerging trends and<br>on                                      | ms, Case studie<br>nipulators, Vis<br>oidance, Force<br>(temperature, l<br>future directio                 | es and practic<br>sion sensors<br>and torque s<br>humidity, etc<br>ns in sensor                   | al application<br>for object<br>sensors for<br>.), Feedbach<br>technology                 | ons:<br>et detection and<br>robotic grippers,<br>< control systems<br>for robotics and                          |
| Course                                                                     | Mapping:                                                                                                                                                                                                                                                | Disoma                                                                                                     |                                                                                                   |                                                                                           |                                                                                                                 |
| Unit                                                                       | Contents                                                                                                                                                                                                                                                | Taxonomy<br>Level                                                                                          | CO-<br>mapped                                                                                     | PO<br>mapped                                                                              | PSO<br>mapped                                                                                                   |
| Ι                                                                          | Introduction to Sensors & Transducers                                                                                                                                                                                                                   | 2                                                                                                          | 1,2                                                                                               | 1                                                                                         | 1                                                                                                               |
| II<br>III                                                                  | Sensor Principles & Technologies<br>Sensor Interfacing & Signal<br>Conditioning                                                                                                                                                                         | 2<br>3,4                                                                                                   | 1,2,3<br>3,4                                                                                      | 1,2,3,4,5       1,2,3,4,5                                                                 | 1<br>1,2                                                                                                        |
| IV<br>V                                                                    | Sensor Fusion and Integration<br>Application of Sensor Technology                                                                                                                                                                                       | 3,4<br>3,4                                                                                                 | 3,4,5<br>3,4,5                                                                                    | $ \begin{array}{c} 1,4,5\\ 1,2,3,4,5,\\ 6 \end{array} $                                   | 1,2<br>1,2                                                                                                      |

# Learning Resources

### **Text Books:**

1. Sawhney A. K., "Electrical and Electronics Measurements and Instrumentation", Dhanpat Rai & Sons, 4 th Edition, 1994.

2. D. Patranabis, "Sensors and Transducers", Prentice Hall India Learning Private Limited, 2nd Edition.

#### **Reference Books**

1] Robotics: Modelling, Planning and Control" by Bruno Siciliano et al.

2] Sensors and Actuators in Mechatronics: Design and Applications" by Andrzej M. Pawlak

3] Introduction to Autonomous Robots" by Nikolaus Correll et al.

4] Fundamentals of Industrial Automation" by Ricardo Suárez Fernández

5] Sensor Technology Handbook" by Jon S. Wilson

6] B.C. Nakra, K.K. Chaudhary, "Instrumentation, Measurement and Analysis", McGraw Hill Education India Private Limited, 4th Edition

7] John G. Webster, "Instrumentation and Sensors Handbook", CRC Press, 1 st Edition, 1999.

|        | Guidelines for Continuous Comprehensive Evaluation of Theory Course                                                                            |                   |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Sr.No. | <b>Components for Continuous Comprehensive Evaluation</b>                                                                                      | Marks<br>Allotted |  |  |  |  |
| 1      | Assignments<br>(Total 3Assignment,Unit I and II 20marks, Unit III and IV20marksand<br>Unit V10 marks & 50 marks will be converted to 10 Marks) | 10                |  |  |  |  |
| 2      | Tests on each unit using LMS<br>(Each test for15 M and total will be converted out of 10M)                                                     | 10                |  |  |  |  |

\*\*\*\*\*\*

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                                                             | т. у                                                                                                                                                                        | . B. Tech. Robotics and                                                                                                              | Automation                                                                                     |                                                                                                                                             |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                                                                                                                                                                             | Pattern 2022, Semester                                                                                                               | : IV                                                                                           |                                                                                                                                             |
|                                                                                             | ROB223012                                                                                                                                                                   | : Name of Subject: Rob                                                                                                               | ot Programming                                                                                 | g                                                                                                                                           |
| Teaching                                                                                    | Scheme:                                                                                                                                                                     | Credit Scheme:                                                                                                                       | Examination S                                                                                  | Scheme:                                                                                                                                     |
| Theory :                                                                                    | )3hrs/week                                                                                                                                                                  | 03                                                                                                                                   | In Sem Exam<br>End Sem Exan<br>CCE: 20 Mar                                                     | : 20 Marks<br>m: 60 Marks<br>ks                                                                                                             |
| Prerequi                                                                                    | site Courses: Robot Kinem                                                                                                                                                   | atics and Dynamics                                                                                                                   | 00202011                                                                                       |                                                                                                                                             |
| Course O<br>Program<br>for test<br>actions<br>modifie                                       | <b>bjectives:</b><br>nming a robot is usually a ling robots. With Visual Con<br>and logic of a robot progra<br>ed. At the end of this course<br>program. Students will also | key task in simulation not<br>mponents, students can m<br>m. The robot routine and<br>e, students will get familia                   | t only for creatin<br>anually create subroutines can<br>ar with the stater<br>ternal axes to a | g factory simulations but<br>tatements that define the<br>easily be visualized and<br>nents and routines behind<br>robot and how to utilize |
| loops in                                                                                    | 1 vour robot routine.                                                                                                                                                       | b learn now to connect ex                                                                                                            | ternar axes to a                                                                               | tobot and now to utilize                                                                                                                    |
| Course O                                                                                    | <b>Putcomes:</b> On completion of                                                                                                                                           | f the course, students wil                                                                                                           | l be able to-                                                                                  |                                                                                                                                             |
|                                                                                             |                                                                                                                                                                             | Course                                                                                                                               |                                                                                                | Bloom's Level                                                                                                                               |
| <u> </u>                                                                                    | Explain different rebet pro                                                                                                                                                 |                                                                                                                                      | 2                                                                                              |                                                                                                                                             |
| C01                                                                                         | Recognize the component                                                                                                                                                     | ts of robot programming                                                                                                              |                                                                                                | 2.3                                                                                                                                         |
| C02                                                                                         | Develop simple programs                                                                                                                                                     | s to simulate robot mover                                                                                                            | nents                                                                                          | 3.4                                                                                                                                         |
| C04                                                                                         | Develop complex robot pr                                                                                                                                                    | ograms for specific applie                                                                                                           | cation                                                                                         | 3.4                                                                                                                                         |
| C04                                                                                         | Describe the safety rules it                                                                                                                                                | robot handling                                                                                                                       |                                                                                                | 3                                                                                                                                           |
|                                                                                             | Describe the safety fules in                                                                                                                                                | COURSE CONTENT                                                                                                                       | S                                                                                              | 5                                                                                                                                           |
| Unit I                                                                                      | Introduction to Rob                                                                                                                                                         | oot Programming                                                                                                                      | (07 hrs)                                                                                       | COs Mapped:<br>CO1                                                                                                                          |
| Robot pro<br>systems of<br>Interlock<br>commands                                            | gramming-Introduction-Ty<br>f Robot, Robot controller<br>commands- Operating m<br>, end effectors and sensors of                                                            | rpes- Flex Pendant- La<br>- major components, fu<br>ode of robot, Jogging<br>commands.                                               | ead through pr<br>inctions-Wrist I<br>g-Types, Robot                                           | rogramming, Coordinate<br>Mechanism-Interpolation-<br>specifications- Motion                                                                |
| Unit II                                                                                     | VAL Lar                                                                                                                                                                     | nguage                                                                                                                               | (07 hrs)                                                                                       | COs Mapped:<br>CO2, CO3                                                                                                                     |
| Robot Lan<br>program c<br>application<br>simple app<br>VAL II La<br>VAL-II pr<br>Simple pic | guages-Classifications, Str<br>ontrol, pick and place ap<br>using VAL program-WA<br>lications.<br>nguage:<br>ogramming-basic comman<br>k and place applications-Pr          | uctures- VAL language<br>oplications, palletizing a<br>IT, SIGNAL and DELA<br>ds, applications- Simple<br>oduction rate calculations | commands moti<br>pplications usin<br>AY command for<br>e problem using<br>s using robot.       | on control, hand control,<br>ag VAL, Robot welding<br>or communications using<br>g conditional statements-                                  |
| Unit III                                                                                    | RAPID La                                                                                                                                                                    | nguage                                                                                                                               | (07 hrs)                                                                                       | COs Mapped:<br>CO2, CO3                                                                                                                     |
| RAPID lar<br>manual me<br>language-I                                                        | guage basic commands- M<br>ode, automatic mode, sub<br>ntroduction, syntax, industr                                                                                         | otion Instructions-Pick a<br>routine command based<br>y problems                                                                     | nd place operati<br>programming.                                                               | on using Industrial robot-<br>Move master command                                                                                           |

| Unit IV | KAREL Programming Language | (07hrs) | COs Mapped:<br>CO3 |
|---------|----------------------------|---------|--------------------|
|         |                            |         |                    |

KAREL language overview-controller, input output system. Language elements-character set, operators, reserved words, data types, arrays (multi-dimensional and variable sized). Use of operators, Program control, Routines, industry problems.

| Unit V | Study of Virtual Robot | (07 hrs) | COs Mapped:<br>CO3, CO4 |
|--------|------------------------|----------|-------------------------|
|--------|------------------------|----------|-------------------------|

Robot cycle time analysis-Multiple robot and machine Interference-Process chart-Simple problems-Virtual robotics, Robot studio online software- Introduction, Jogging, components, work planning, program modules, input and output signals- Singularities-Collision detection-Repeatability measurement of robot-Robot economics. AML Language-General description, elements and functions, Statements, constants and variables-Program control statements-Operating systems, Motion, Sensor commands-Data processing.

#### **Reference Books**

1. S. R. Deb, Robotics technology and flexible automation, Tata McGraw Hill publishing company limited, 1994.

2. Mikell. P. Groover, Industrial Robotics Technology, Programming and Applications, McGraw Hill Co., 1995.

3. Danny Staple, Learn Robotics Programming: Build and control AI-enabled autonomous robots using the Raspberry Pi and Python, Packt Publishing Ltd, 2021

- 4. FANUC America Corporation SYSTEM R-30iB Controller KAREL reference manual
- 5. Klafter. R.D, Chmielewski.T.A. And Noggin's., Robot Engineering: An Integrated Approach, Prentice Hall of India Pvt. Ltd., 1994.
- 6. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., Robotics control, sensing, vision and intelligence, McGrawHill Book co, 1987.
- 7. Craig. J. J. Introduction to Robotics mechanics and control, Addison-Wesley, 1999.

#### Strength of CO-PO Mapping

|     |   |   |   |   |   | Р |   |   |   |    |    |    |    |    |
|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
|     |   |   |   |   |   | 0 |   |   |   |    |    |    |    |    |
|     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | PS | PS |
|     |   |   |   |   |   |   |   |   |   |    |    |    | 01 | O2 |
| CO1 | 1 | 3 | 1 | 3 | - | 1 | 1 | - | - | -  | -  | 1  | 2  | 1  |
| CO2 | 1 | - | 1 | - | - | 1 | 2 | - | - | -  | -  | 1  | 2  | 1  |
| CO3 | 2 | 2 | - | 1 | - | 1 | - | - | - | -  | -  | 1  | 1  | 3  |
| CO4 | 3 | _ | 1 | - | 1 | 1 | 1 | - | - | -  | -  | 1  | 2  | 2  |
| CO5 | 3 | - | 1 | - | 1 | 1 | - | - | - | -  | -  | 1  | 2  | 2  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |          |  |  |  |  |
|---------|---------------------------------------------------------------------|----------|--|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks    |  |  |  |  |
|         |                                                                     | Allotted |  |  |  |  |
| 1       | Tests on each unit using LMS                                        | 10       |  |  |  |  |
|         | (Each test for 20 M and total will be converted out of 10 M)        |          |  |  |  |  |
| 2       | Timely Assignment Submission                                        | 10       |  |  |  |  |

|                                                                  | Т.Ү. В. Те                                                   | ch. Robotics        | and Automation                         |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------|---------------------|----------------------------------------|--|--|
|                                                                  | Patt                                                         | ern 2022, Se        | emester: VI                            |  |  |
|                                                                  | ROB223014: Na                                                | me of Subje         | ect: Micro electro mechanical systems  |  |  |
| Teaching<br>SchemeCourse TypeCredit<br>SchemeExamination Scheme: |                                                              | Examination Scheme: |                                        |  |  |
| Theory:                                                          | 03 DEC                                                       | 03                  | INSEM 20 marks                         |  |  |
| hrs/wee                                                          | k                                                            |                     | ENDSEM 60 marks                        |  |  |
|                                                                  |                                                              |                     | CCE 20 marks                           |  |  |
|                                                                  |                                                              |                     |                                        |  |  |
| Prerequisite                                                     | Courses: Applied Elect                                       | ronics Engir        | eering ,Sensory Technology             |  |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                          |                                                              | -                   |                                        |  |  |
| Course Obje                                                      | ectives: By the end of the                                   | e course, stu       | dents should be able to                |  |  |
| Sr No                                                            | Description                                                  |                     |                                        |  |  |
| 51.140.                                                          | Description                                                  |                     |                                        |  |  |
| 1                                                                | Articulate the core cor                                      | cepts of ME         | MS technology                          |  |  |
| 2                                                                | Gain proficiency in ya                                       | rious micro f       | fabrication techniques including       |  |  |
| 2                                                                | photolithography thin                                        | film deposit        | ion etching and bonding                |  |  |
| 3                                                                | Evaluate different type                                      | es of sensors       | and actuators utilized in MEMS such as |  |  |
| 5                                                                | electrostatic sensors, th                                    | nermal actua        | tors, and piezoresistive sensors.      |  |  |
| 4                                                                | 4 Explore Advanced MEMS Concepts and Real-World Applications |                     |                                        |  |  |
|                                                                  |                                                              |                     | FF                                     |  |  |
| Course Outo                                                      | comes:                                                       |                     |                                        |  |  |
| Course                                                           | Description                                                  |                     |                                        |  |  |
| Outcomes                                                         | Student will be able to                                      | :                   |                                        |  |  |

| Outcomes | Student will be able to:                                                     |
|----------|------------------------------------------------------------------------------|
| CO1      | Explain the operation of micro devices, micro systems and their applications |
| CO2      | Design the micro devices, micro systems using the MEMS fabrication process   |
| CO3      | Compare a knowledge of basic approaches for various sensor design            |
| CO4      | Compare a knowledge of basic approaches for various actuator design.         |

### Course context, Relevance, Practical Significance:

This course provides an in-depth examination of Micro-electromechanical Systems (MEMS), encompassing foundational concepts, fabrication methodologies, sensor and actuator functionalities, and practical applications. Students will gain expertise in micro fabrication techniques and explore the diverse array of sensors and actuators used in MEMS devices. Additionally, they will investigate advanced topics such as polymer and optical MEMS, culminating in a comprehensive understanding of MEMS technology and its real-world implications across industries.

### **Course Contents:**

| Unit | Contents                                                                  | Lectu |
|------|---------------------------------------------------------------------------|-------|
| Omt  | Contents                                                                  | re    |
|      |                                                                           | Hrs.  |
| 1    | Unit 1: Introduction to MEMS                                              | 7     |
|      | What is MEMS?, Definition and Classification, History of MEMS,            |       |
|      | Intrinsic Characteristics of MEMS: Militarization, Microelectronics       |       |
|      | Integration, Parallel Fabrication with precision, Sensors and Actuator:   |       |
|      | Energy domains and transducers, Sensor Consideration, Actuator            |       |
|      | Consideration, Review of Electrical and Mechanical Concepts:              |       |
|      | Semiconductor devices, Stress and strain analysis, Flexural beam bending, |       |
|      | Torsional deflection.                                                     |       |

| 2 | Unit 2: Micro fabrication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | Overview of Microfabrication : Photolithography, Thin film Deposition,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|   | Thermal oxidation of Silicon, wet etching, Silicon anisotropic etching, wafer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|   | dicing, wafer bonding etc., The Microelectronics Fabrication Process Flow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|   | Silicon-Based MEMS Processes, New Materials and Fabrication Processes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|   | LIGA Process, Assembly of 3D MEMS, Foundry process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 3 | Unit 3: Sensors and actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 |
|   | Electrostatic sensors, Parallel plate capacitors, Applications, Interdigitated<br>Finger capacitor, Comb drive devices, Micro Grippers, Micro Motors,<br>Thermal Sensing and Actuation, Thermal expansion, Thermal couples,<br>Thermal resistors, Thermal Bimorph, Applications, Magnetic Actuators,<br>Micromagnetic components, Case studies of MEMS in magnetic actuators,<br>Actuation using Shape Memory Alloys<br>Piezoresistive sensors, Piezoresistive sensor materials, Stress analysis of<br>mechanical elements, Applications to Inertia, Pressure, Tactile and Flow<br>sensors, Piezoelectric sensors and actuators, piezoelectric effects,<br>piezoelectric materials, Applications to Inertia, Acoustic, Tactile and |   |
| 1 | Flow sensors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 |
| 4 | Dolymers in MEMS Dolimide SU & Liquid Crystal Dolymer (LCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
|   | DDMS DMMA Derulana Elucroscerbon Application to Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|   | Processing Flow and Tastile sensors Optical MEMS Langes and Minners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|   | Pressure, Flow and Tactile sensors. Optical MEMIS, Lenses and Militors,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|   | Actuators for Active Optical MEMS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 5 | Unit 5: Case Studies of Selected MEMS products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |
|   | Blood pressure sensor, Microphone, Acceleration sensors, Gyros, Zigbee,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|   | Ultrasonic Distance ranging sensors, Metal Detector, Wireless Cameras and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|   | voice transmissions etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

### **Course Mapping:**

| Unit | Contents                               | Blooms<br>Taxonomy<br>Level | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|------|----------------------------------------|-----------------------------|---------------|--------------|---------------|
| 1    | Introduction to MEMS                   | 2                           | 1             | 1            | 1             |
| 2    | Micro fabrication                      | 3                           | 2             | 3            | 1             |
| 3    | Sensors and actuators                  | 4                           | 3             | 2            | 1             |
| 4    | Polymer and Optical MEMS               | 5                           | 4             | 5            | 1             |
| 5    | Case Studies of Selected MEMS products | 6                           | 5             | 11           | 1             |

### **References Books:**

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.
- 3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.
- 4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
- 5. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer, 2010.
- 6. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 7. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

|                                                   |                          | ROB223014: Nai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me of Subje                                                                                             | ect: Micro electro mechanical systems                                                                                                                                                                                         |
|---------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teach<br>Scher                                    | ing<br>ne                | Course Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Credit<br>Scheme                                                                                        | Examination Scheme:                                                                                                                                                                                                           |
| Theory<br>hrs/we                                  | v:03<br>eek              | DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03                                                                                                      | INSEM 20 marks<br>ENDSEM 60 marks<br>CCE 20 marks                                                                                                                                                                             |
| Proroquisit                                       | Cour                     | soc. Applied Fleet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | onice Engir                                                                                             | Paring Sansory Technology                                                                                                                                                                                                     |
| Prerequisit<br>Course Ob<br>Sr.No.                | e Cour<br>jectives<br>De | ses: Applied Electres: By the end of the scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ronics Engir                                                                                            | heering ,Sensory Technology<br>dents should be able to                                                                                                                                                                        |
| Prerequisit<br>Course Ob<br>Sr.No.                | e Cour<br>jectives<br>De | ses: Applied Electrons: By the end of the scription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | conics Engir                                                                                            | heering ,Sensory Technology<br>dents should be able to                                                                                                                                                                        |
| Prerequisit<br>Course Ob<br>Sr.No.<br>1<br>2      | jectives                 | ses: Applied Electrons: By the end of the scription culate the core control of the proficiency in variabilithography, thin the scription of th | conics Engir<br>course, stu<br>cepts of ME<br>ious micro t<br>film deposit                              | heering ,Sensory Technology<br>dents should be able to<br>MS technology<br>fabrication techniques, including<br>ion, etching, and bonding.                                                                                    |
| Prerequisit<br>Course Ob<br>Sr.No.<br>1<br>2<br>3 | jectives                 | ses: Applied Electrons: By the end of the scription culate the core control proficiency in var colithography, thin the core to static sensors, the sensors, the sensors of  | conics Engir<br>course, stu<br>cepts of ME<br>ious micro<br>film deposit<br>s of sensors<br>ermal actua | Anteering ,Sensory Technology<br>dents should be able to<br>CMS technology<br>fabrication techniques, including<br>ion, etching, and bonding.<br>and actuators utilized in MEMS, such as<br>tors, and piezoresistive sensors. |

| Course<br>Outcomes | Description<br>Student will be able to:                                      |
|--------------------|------------------------------------------------------------------------------|
| CO1                | Explain the operation of micro devices, micro systems and their applications |
| CO2                | Design the micro devices, micro systems using the MEMS fabrication process   |
| CO3                | Compare a knowledge of basic approaches for various sensor design            |
| <b>CO4</b>         | Compare a knowledge of basic approaches for various actuator design.         |

### **Course context, Relevance, Practical Significance:**

This course provides an in-depth examination of Micro-electromechanical Systems (MEMS), encompassing foundational concepts, fabrication methodologies, sensor and actuator functionalities, and practical applications. Students will gain expertise in micro fabrication techniques and explore the diverse array of sensors and actuators used in MEMS devices. Additionally, they will investigate advanced topics such as polymer and optical MEMS, culminating in a comprehensive understanding of MEMS technology and its real-world implications across industries.

### **Course Contents:**

| Unit | Contents                                                                | Lectu |
|------|-------------------------------------------------------------------------|-------|
| Omt  | Contents                                                                | re    |
|      |                                                                         | Hrs.  |
| 1    | Unit 1: Introduction to MEMS                                            | 7     |
|      | What is MEMS? , Definition and Classification, History of MEMS,         | 1     |
|      | Intrinsic Characteristics of MEMS: Militarization, Microelectronics     | l     |
|      | Integration, Parallel Fabrication with precision, Sensors and Actuator: | l     |
|      | Energy domains and transducers, Sensor Consideration, Actuator          |       |

|   | Consideration, Review of Electrical and Mechanical Concepts:                   |   |
|---|--------------------------------------------------------------------------------|---|
|   | Semiconductor devices, Stress and strain analysis, Flexural beam bending,      |   |
|   | Torsional deflection.                                                          |   |
|   |                                                                                |   |
| 2 | Unit 2: Micro fabrication                                                      | 7 |
|   | Overview of Microfabrication : Photolithography, Thin film Deposition,         |   |
|   | Thermal oxidation of Silicon, wet etching, Silicon anisotropic etching, wafer  |   |
|   | dicing, wafer bonding etc., The Microelectronics Fabrication Process Flow,     |   |
|   | Silicon-Based MEMS Processes, New Materials and Fabrication Processes,         |   |
|   | LIGA Process, Assembly of 3D MEMS, Foundry process.                            |   |
| 3 | Unit 3: Sensors and actuators                                                  | 7 |
|   | Electrostatic sensors, Parallel plate capacitors, Applications, Interdigitated |   |
|   | Finger capacitor, Comb drive devices, Micro Grippers, Micro Motors,            |   |
|   | Thermal resistors Thermal Bimorph Applications Magnetic Actuators              |   |
|   | Micromagnetic components. Case studies of MEMS in magnetic actuators           |   |
|   | Actuation using Shape Memory Alloys                                            |   |
|   | Piezoresistive sensors, Piezoresistive sensor materials, Stress analysis of    |   |
|   | mechanical elements, Applications to Inertia, Pressure, Tactile and Flow       |   |
|   | sensors ,Piezoelectric sensors and actuators , piezoelectric effects,          |   |
|   | piezoelectric materials, Applications to Inertia, Acoustic, Tactile and        |   |
| 4 | Flow sensors.                                                                  | 7 |
| 4 | Delumers in MEMS Delimide SU & Liquid Crustel Delumer (LCD)                    | 1 |
|   | DDMS DMMA Dorulana Eluorocarbon Application to Acceleration                    |   |
|   | Pressure Flow and Tactile sensors Ontical MEMS Lanses and Mirrors              |   |
|   | Actuators for Active Optical MEMS                                              |   |
| 5 | Actuators for Active Optical MEMS.                                             | 7 |
| 5 | Dint 5: Case Studies of Selected WEWIS products                                | 1 |
|   | Elleraconic Distance ranging sensors Metal Detector Wireless Compress and      |   |
|   | voice transmissions etc.                                                       |   |
|   |                                                                                |   |

### **Course Mapping:**

| Unit | Contents                               | Blooms<br>Taxonomy<br>Level | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|------|----------------------------------------|-----------------------------|---------------|--------------|---------------|
| 1    | Introduction to MEMS                   | 2                           | 1             | 1            | 1             |
| 2    | Micro fabrication                      | 3                           | 2             | 3            | 1             |
| 3    | Sensors and actuators                  | 4                           | 3             | 2            | 1             |
| 4    | Polymer and Optical MEMS               | 5                           | 4             | 5            | 1             |
| 5    | Case Studies of Selected MEMS products | 6                           | 5             | 11           | 1             |

### **References Books:**

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.
- 3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.
- 4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
- 5. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and

Application," Springer, 2010.

- 6. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 7. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 8. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| T. Y. B. Tech. Robotics and Automation<br>Pattern 2022, Semester: VI<br>ROB 223014A: Name of Subject: Elective II (B) Additive Manufacturing                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                       |                               |                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|----------------------|--|--|--|
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Scheme:                                                                                                                                | Credit Scheme:                                        | Examination S                 | Scheme:              |  |  |  |
| Theory :03hrs/week03In Sem Exam: 20 Marks<br>End Sem Exam: 60 Marks<br>CCE: 20 Marks                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                       |                               |                      |  |  |  |
| Prerequi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | site Courses: - Manufactur                                                                                                               | ing Technology, Reverse                               | Engineering, En               | ngineering Mechanics |  |  |  |
| Course (<br>Understa<br>Understa<br>Understa<br>Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Objectives:</b><br>nd the Additive Manufactur<br>nd Light and LASER based<br>nd Extrusion and energy bas<br>the Hardware and Software | ing<br>Techniques<br>sed Techniques<br>for AM         |                               |                      |  |  |  |
| Course (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Dutcomes:</b> On completion o                                                                                                         | of the course, students will                          | ll be able to–                |                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | Course Outcomes                                       |                               | Bloom's Level        |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Explain the principles, me<br>environmental hazards of                                                                                   | thods, possibilities and li<br>Additive Manufacturing | mitations as wel technologies | 1 as 2. Understand   |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Identify the characteristics<br>Additive Manufacturing te                                                                                | of the different materials<br>chnologies.             | s used in                     | 2. Understand        |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Explore the potential of a life applications                                                                                             | dditive manufacturing te                              | chnologies in rea             | al 2. Understand     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | COURSE CONTENT                                        | ſS                            |                      |  |  |  |
| Unit IAdditive Manufacturing (AM) Overview(07 hrs)COs Mapped:<br>CO1, CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                       |                               |                      |  |  |  |
| Introduction to AM, Historical Development, Additive v/s Conventional Manufacturing, Role of AM in Product development cycle, Rapid prototyping, Relevance of AM in Industry 4.0, Current industry and manufacturing trends driving AM, AM Process-Chain, Reverse engineering, Advantages, Types of materials, Classification of AM Processes (Process-based, material form based, application-based – direct and indirect processes and Micro- and Nano-additive processes), Process Planning for Additive Manufacturing. |                                                                                                                                          |                                                       |                               |                      |  |  |  |

| Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light and LASER based Techniques      | (07 hrs)    | COs Mapped:<br>CO2, CO3 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------|--|--|--|--|--|--|--|
| Introduction, Process and mechanism, Materials, Process Physics, Parameters, Benefits, Drawbacks,                                                                                                                                                                                                                                                                                                                                                                                   |                                       |             |                         |  |  |  |  |  |  |  |
| Limitations and Applications. Light-Based Photo-curing: Stereolithography (SLA), Digital Light Processing (DLP), Direct Laser Writing (DLW), Continuous Liquid Interface Production (CLIP)                                                                                                                                                                                                                                                                                          |                                       |             |                         |  |  |  |  |  |  |  |
| Laser-Based Melting: Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS),<br>Selective Laser Melting (SLM), Electron-Beam Melting (EBM), Laser Blown Powder, Laser<br>Wire Deposition, Laser Engineered Net Shaping (LENS), 3D Laser Cladding.                                                                                                                                                                                                                     |                                       |             |                         |  |  |  |  |  |  |  |
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extrusion and energy based Techniques | (07 hrs)    | COs Mapped:<br>CO2, CO3 |  |  |  |  |  |  |  |
| Introduction, Process and mechanism, Materials, Process Physics, Parameters, Benefits,<br>Drawbacks,<br>Limitations and Applications. Extrusion-Based Deposition: Fused Deposition Modeling (FDM),<br>Fused Filament Fabrication (FFF), Direct Ink Writing (DIW), Robocasting, Bio-printing<br>Inkjet(droplet)-Based Deposition and Fusion: Multi-jet Modeling (MJM), Polyjet Printing,<br>Nanoparticle Jetting, Binder Jetting, Multi-Jet Fusion, Color-jet Printing (CJP), Energy |                                       |             |                         |  |  |  |  |  |  |  |
| Deposition Techniques: Plasma/TIG/MIG/Arc Deposition, Electron Beam-based DED, Direct Metal Deposition (DMD).                                                                                                                                                                                                                                                                                                                                                                       |                                       |             |                         |  |  |  |  |  |  |  |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Materials and Design for AM           | (07<br>hrs) | COs Mapped:<br>CO3      |  |  |  |  |  |  |  |
| Introduction, Materials: Metals, Polymers, Ceramics & Bio-ceramics, Composites, Hierarchical                                                                                                                                                                                                                                                                                                                                                                                        |                                       |             |                         |  |  |  |  |  |  |  |

Materials, Biomimetic Materials, Forymers, Certaintes & Bio-certaintes, Composites, Hierarentear Materials, Biomimetic Materials, Shape-Memory Alloys, 4D Printing & Bio-active materials, Material selection, AM Material Specific Process Parameters: Processes, Heat or Chemical Treatments, Phase Transformations, Process Selection for various applications, DfAM: Process specific strategies, Rules and Recommendations, Quality considerations and Post-Processing techniques: Requirements and Techniques, Support Removal, Sanding, Acetone treatment, Polishing, Heat treatments, Hot isostatic pressing, Materials science, Surface enhancement Techniques and its Material Science Analysis of AM's error sources

| Unit V | Hardware and Software for AM | (07 hrs) | COs Mapped:<br>CO3 |
|--------|------------------------------|----------|--------------------|
|--------|------------------------------|----------|--------------------|

Construction of Basic AM Machines: Equipment Layout and sub-system Design, Construction, Working, Equipment Topology/Layout Frame Designs, 3D Printer Design Considerations (Filament, Frame, Build Platform, Extruder Design, Nozzles, Print Bed, Heated build/Base Plate, Heater, Dispenser, Optical system, Cooling system, Gas Recirculation System, Laser controller, Gas Filtration, Inert Gas Cooling system, Powder Handling System, Loading/unloading System.

Software and Controller: Types of In-fill, Types of slicing, Software Integration (with Process, Slicing, etc), Control system (PLC and safety PLC, micro control/ Microcontroller, Micro-processor control), CAD Software and Controller Interfacing, CURA Software, Relevant G/M Codes, Standard firmware (Merlin Software, etc), In-process Monitoring, Calibration

|   | Reference Books                                                                                                                                      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | . L. Lu, J. Y. H. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid                                                                |
|   | Prototyping", Springer, 2001                                                                                                                         |
| 2 | . Andreas Gebhardt and Jan-Steffen Hötter, "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing" Hanser Publishers, Munich, 2016.  |
| 3 | . Ben Redwood, FilemonSchöffer& Brian Garret, "The 3D Printing Handbook:<br>Technologies, design and applications", 3D Hubs B.V. 2017                |
| 4 | . Ehsan Toyserkani, Amir Khajepour, Stephen F. Corbin, "Laser Cladding", CRC Press, 2004                                                             |
| 5 | . Andreas Gebhardt, "Understanding Additive", Hanser Publishers, Munich, 2011                                                                        |
| 6 | . Ben Redwood, Filemon Schöffer & Brian Garret, "The 3D Printing Handbook – Technologies,                                                            |
| 7 | . Design and Applications" Part One:3D Printing Technologies and Materials, 3D Hubs, 2017                                                            |
| 8 | . Chee Kai, Kah Fai, Chu Sing, 'Rapid Prototyping: Principles and Applications", 2nd Ed., 2003                                                       |
| 9 | D. T. Pham and S.S. Dimov, "Rapid Manufacturing" Springer, 2001                                                                                      |
| 1 | 0. Rupinder Singh J. Paulo Davim, "Additive Manufacturing - Applications and Innovations" CRC Press, 2019                                            |
| 1 | 1. I. Gibson, D. W. Rosen, B. Stucker, "Additive Manufacturing Technologies" Springer, 2010                                                          |
| 1 | <ol> <li>L. Jyothish Kumar, Pulak M. Pandey, David Ian Wimpenny, "3D Printing and Additive<br/>Manufacturing Technologies" Springer, 2019</li> </ol> |

| Strength of CO-PO Mapping |   |   |   |   |   |    |   |   |   |    |    |    |
|---------------------------|---|---|---|---|---|----|---|---|---|----|----|----|
|                           |   |   |   |   |   | PO |   |   |   |    |    |    |
|                           | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       | 1 | - | 1 | - | - | -  | 1 | - | - | -  | -  | -  |
| CO2                       | 1 | - | 1 | - | - | -  | 2 | - | - | -  | -  | -  |
| CO3                       | 2 | 2 | - | 1 | - | -  | - | - | - | -  | -  | -  |
| CO4                       | - | - | 1 | - | 1 | -  | - | - | - | -  | -  | -  |
| CO5                       | 3 | 3 | 3 | 2 | 1 | -  | 3 | - | - | -  | -  | _  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |          |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|----------|--|--|--|--|--|--|
| Sr. No. | Image: Components for Continuous Comprehensive Evaluation           |          |  |  |  |  |  |  |
|         |                                                                     | Allotted |  |  |  |  |  |  |
| 1       | Tests on each unit using LMS                                        | 10       |  |  |  |  |  |  |
|         | (Each test for 20 M and total will be converted out of 10 M)        |          |  |  |  |  |  |  |
| 2       | Timely Assignment Submission                                        | 10       |  |  |  |  |  |  |



# K. K. Wagh Institute of Engineering Education and Research, Nashik Autonomous from Academic Year 2022-23)

|                                                          |                                                                                                                                                                            | T. Y. B. Tech.<br>Pattern 2022 Semester                                                                                                    | : V                                                                                                     |                                                                                                |  |  |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Course C                                                 | ode: ROB223006 (                                                                                                                                                           | Course Subject : Electiv                                                                                                                   | e 1(C) Flexible M                                                                                       | Ianufacturing Systems                                                                          |  |  |  |
| Teaching                                                 | Teaching Scheme:Credit Scheme:Examination Scheme:                                                                                                                          |                                                                                                                                            |                                                                                                         |                                                                                                |  |  |  |
| Theory :(                                                | 03hrs/week                                                                                                                                                                 | 03                                                                                                                                         | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks          |                                                                                                |  |  |  |
| Prerequisi                                               | ite Courses: - Manufacturin                                                                                                                                                | ng Technology.                                                                                                                             |                                                                                                         |                                                                                                |  |  |  |
| Course C<br>1. Un<br>2. Lea<br>3. Ma<br>4. Exp<br>5. Gai | <b>Objectives:</b><br>derstand Flexible Manufact<br>arn about Cellular Manufact<br>ster Computer-Aided Manu<br>plore the integration of com<br>in insight into Automated M | uring Systems (FMS) and<br>curing for enhanced produ-<br>ifacturing (CAM) techniq<br>puters in manufacturing f<br>faterial Handling System | I their importance<br>action flexibility.<br>pues, including CN<br>for efficiency.<br>s for streamlined | e in modern industry.<br>NC programming.<br>operations.                                        |  |  |  |
| Course C                                                 | Outcomes: On completion o                                                                                                                                                  | f the course, students wil                                                                                                                 | l be able to                                                                                            |                                                                                                |  |  |  |
|                                                          |                                                                                                                                                                            | <b>Course Outcomes</b>                                                                                                                     |                                                                                                         | <b>Bloom's Level</b>                                                                           |  |  |  |
| CO1                                                      | Explain FMS and its appli                                                                                                                                                  | cations                                                                                                                                    |                                                                                                         | 2-Understanding                                                                                |  |  |  |
| CO2                                                      | Demonstrate applications of system                                                                                                                                         | of group technology and t                                                                                                                  | tool management                                                                                         | 2-Understanding                                                                                |  |  |  |
| CO3                                                      | Perform CNC programmin                                                                                                                                                     | ng                                                                                                                                         |                                                                                                         | 3- Apply                                                                                       |  |  |  |
| CO4                                                      | Apply the concept of comp<br>scenario                                                                                                                                      | puter integrated manufact                                                                                                                  | uring in FMS                                                                                            | 3- Apply                                                                                       |  |  |  |
|                                                          |                                                                                                                                                                            | COURSE CONTENT                                                                                                                             | s                                                                                                       | i                                                                                              |  |  |  |
| Unit I                                                   | FMS Introd                                                                                                                                                                 | uction and Description                                                                                                                     | (08hrs)                                                                                                 | Cos Mapped<br>CO1                                                                              |  |  |  |
| Limitation<br>of FMS, a<br>FMS, Bend<br>and Softwa       | s with conventional manufa<br>nd Significance of FMS, C<br>efits and limitations of FM<br>are required for an FMS, CI                                                      | cturing, Need for FMS In<br>General layout and config<br>S, Areas of Application<br>M Technology, Hierarch                                 | ntroduction, Defin<br>guration of FMS,<br>of a FMS in Indu<br>y of CIM, FMS Ju                          | nition, Basic Component<br>Principle Objectives of<br>astry, Various Hardware<br>astification. |  |  |  |
| Unit II                                                  | Cellular Man                                                                                                                                                               | ufacturing                                                                                                                                 | (8hrs) (<br>C                                                                                           | Cos Mapped<br>CO2                                                                              |  |  |  |
| Introductic<br>Manufactu                                 | n, Description and Classif<br>ring. Group Technology: In                                                                                                                   | ications of Cell, Unatten<br>ntroduction, Definition, F                                                                                    | ded Machining,<br>Reasons for Adop                                                                      | Cellular versus Flexible<br>ting Group Technology.                                             |  |  |  |

Benefits of Group Technology Affecting Many Areas of a Company, Obstacles to Application of GT

| Unit | Computer Aided Manufacturing | (8hrs) | Cos Mapped |
|------|------------------------------|--------|------------|
| III  |                              |        | CO3        |

Concepts and features of NC, CNC & DNC - feedback devices ,Interpolators., Point-to-point and contouring systems –Interchangeable tooling system – preset & qualified tools – ISO specification – Machining center – Turning center, CNC Programming: -Machine Tool Co-ordinate System, Machine zero, Job zero, Cutter Programming, Tool Offsets, Manual part programming – steps involved – G-codes and M-codes, sample program in lathe & milling. CAM package – canned cycles - Programming.

| Unit | Computer Integrated Manufacturing | (8hrs) | Cos Mapped |
|------|-----------------------------------|--------|------------|
| IV   |                                   |        | CO4        |

Computer application in manufacturing automation, Computer aided inspection and quality control. Computer integrated production management system, inventory, material requirement planning, manufacturing resource planning, enterprise resource planning. Rapid Product Development and Manufacture, Extended Enterprises.

| Unit V | Automated Material Movement and | (8hrs) | Cos Mapped |
|--------|---------------------------------|--------|------------|
|        | Storage System                  |        | <b>CO4</b> |

Introduction, Types of AGV and Their principle of working, Advantages, Limitation and General AGV Guide path, Robots, Benefits of using Industrial Robots, Basic components and benefits of Automated Storage and Retrieval Systems, Conveyors and Pallet Flotation System, Queuing Carrousels and Automatic Work Changers, Coolant and Chip Disposal and Recovery system

#### **Text Books**

- H. K. Shivanand, M. M. Benal, Flexible Manufacturing System, V. Koti, New Age Pub. ISBN:9386070227
- 7. Groover M.P, Automation, Production Systems and Computer Integrated Manufacturing, Prentice Hall of India, ISBN: 9789332572492

### **Reference Books**

1. Nanua Singh, Approach to Computer Integrated Design and Manufacturing, John Wiley and Sons, ISBN:9780471585176

2. Luggen, Flexible Manufacturing Cells and Systems, , PHI, ISBN: 9780133217384

| Strength of CO-PO Mapping |   |   |   |   |    |   |   |   |   |    |    |    |
|---------------------------|---|---|---|---|----|---|---|---|---|----|----|----|
|                           |   |   |   |   | PC | ) |   |   |   |    |    |    |
|                           | 1 | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       | 2 | - | 1 | 1 | 3  | - | - | 2 | 2 | 3  | -  | 2  |
| CO2                       | 2 | - | 3 | 3 | 3  | 3 | - | 2 | 2 | 3  | -  | 3  |
| CO3                       | 2 | - | 3 | 3 | 3  | 3 | - | 2 | 2 | 3  | -  | 3  |
| CO4                       | 2 | - | 3 | 3 | 3  | 3 | - | 2 | 2 | 3  | -  | 3  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                |  |  |  |  |  |
|---------|---------------------------------------------------------------------|----------------|--|--|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks Allotted |  |  |  |  |  |
| 1       | Assignments on each Unit                                            | 10             |  |  |  |  |  |
| 2       | LMS Test on Each Unit                                               | 10             |  |  |  |  |  |
|         | Total                                                               | 20             |  |  |  |  |  |

# K. K. Wagh Institute of Engineering Education and Research, Nashik ( Autonomous from Academic Year 2022-23)

|                                                                          | Course Code: ROB2230                                                                                                                                                                          | T. Y. B. Tech.<br>Pattern 2022 Semester                                                                                  | r: M<br>Elective 2: Clo                                                                        | ud Computing                                                                            |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Teaching                                                                 | g Scheme:                                                                                                                                                                                     | Credit Scheme:                                                                                                           | Examination                                                                                    | Scheme:                                                                                 |  |  |
| Theory :                                                                 | 03hrs/week                                                                                                                                                                                    | 03                                                                                                                       | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks |                                                                                         |  |  |
| Prerequis                                                                | ite Courses: - Database Ma                                                                                                                                                                    | inagement                                                                                                                |                                                                                                |                                                                                         |  |  |
| Course (<br>1. To intr<br>2. To giv<br>3. To kn<br>4. To cla<br>Course ( | <b>Objectives:</b><br>roduce the fundamentals of O<br>ve Insights into the virtualization<br>ow the relationship between<br>ssify and evaluate Cloud Sec<br><b>Dutcomes:</b> On completion of | Cloud computing, its tech<br>ation technologies and An<br>Cloud and SOA.<br>curity Issues.<br>f the course, students wil | nologies, Chall<br>chitecture.<br>1 be able to                                                 | lenges and Applications                                                                 |  |  |
|                                                                          |                                                                                                                                                                                               | Course Outcomes                                                                                                          |                                                                                                | Bloom's Level                                                                           |  |  |
| CO1                                                                      | Understand the basic conc                                                                                                                                                                     | epts of Cloud Computing                                                                                                  | <b>.</b>                                                                                       | 1                                                                                       |  |  |
| CO2                                                                      | <b>CO2</b> Describe the underlying principles of different Cloud Service Models.                                                                                                              |                                                                                                                          |                                                                                                |                                                                                         |  |  |
| CO3                                                                      | Classify the types of Virtu                                                                                                                                                                   | 2                                                                                                                        |                                                                                                |                                                                                         |  |  |
| CO4                                                                      | Examine the Cloud Archit<br>Cloud Security.                                                                                                                                                   | ecture and understand the                                                                                                | e importance of                                                                                | 3                                                                                       |  |  |
| CO5                                                                      | Develop applications on C                                                                                                                                                                     | loud Platforms.                                                                                                          |                                                                                                | 3                                                                                       |  |  |
|                                                                          |                                                                                                                                                                                               | COURSE CONTENT                                                                                                           | S                                                                                              |                                                                                         |  |  |
| Unit I                                                                   | Fundamentals of Cloud C                                                                                                                                                                       | Computing                                                                                                                | (7hrs)                                                                                         | Cos Mapped<br>CO1                                                                       |  |  |
| Introduction<br>Cloud Ty<br>Exploring<br>computing                       | on to Cloud Computing, Hi<br>pes: NIST, Cloud cube,<br>the Cloud Computing S<br>g.                                                                                                            | istory of Cloud Computi<br>Cloud service models,<br>Stack, Advantages, Dis                                               | ng, Characteris<br>Cloud Compu<br>advantages an                                                | stics of Cloud Computing,<br>ating deployment models,<br>ad Applications of cloud       |  |  |
|                                                                          | Cloud Service Models(7hrs)Cos MappedCO2                                                                                                                                                       |                                                                                                                          |                                                                                                |                                                                                         |  |  |
| Introductionservice modulation<br>(IaaS), Note<br>Comparison             | on and benefits of Cloud sodels, Software as a service etwork as a service (NaaS) on of cloud services.                                                                                       | ervices, Characteristics,<br>e(SaaS), Platform as a s<br>), Identity as a service                                        | benefits, appli<br>ervice (PaaS),<br>(IdaaS), Datab                                            | ications of different cloud<br>Infrastructure as a service<br>ase as a service (DbaaS), |  |  |
| Unit<br>III                                                              | Virtualization                                                                                                                                                                                |                                                                                                                          | (7hrs)                                                                                         | Cos Mapped<br>CO3                                                                       |  |  |

Introduction to Virtualization, Difference between Cloud Computing and Virtualization Types of Virtualization: Hardware, Software, Operating system, Server, Storage, Methods of implementing storage Virtualization, Network Virtualization Types, Advantages, Disadvantages, Virtualization Architecture and Software, Virtual Clustering, Applications of Virtualization.

| Unit | Service Oriented Architecture and Cloud | (7hrs) | Cos Mapped |
|------|-----------------------------------------|--------|------------|
| IV   | Security                                |        | CO4        |

Cloud Computing Architecture (COA): Design principles, Cloud computing life cycle (CCLC), Cloud computing reference architecture, Service Oriented Architecture (SOA) characteristics and fundamental components.

Cloud Security: Cloud CIA security model (Confidentiality, Integrity and Availability), Cloud computing security architecture, Service provider security issues, Cloud Security Issues and challenges, Security issues in virtualization, Host Security, Data Security, Firewalls.

| Unit V | Cloud Environment and Application | (7hrs) | Cos Mapped |  |
|--------|-----------------------------------|--------|------------|--|
|        | Development                       |        | CO5        |  |

Cloud Platforms: Google App Engine, Compute Services, Storage Services, Communication Services, Amazon Web Services Architecture and core concepts, Application Lifecycle, Cost Model, Microsoft Azure Cloud services Azure core concepts, Windows Azure Platform Appliance.

#### **Text Books**

1. Kailash Jayaswal, Jagannath Kallakurchi, Donald J. Houde, Dr. Deven Shah, "Cloud Computing: Black Book", Dreamtech Press.

2. Surbhi Rastogi, "Cloud Computing Simplified", 2021 Edition, BPB Publications.

3. Kai Hwang, Geoffrey.C.Fox., Jack J. Dongarra, "Distributed and Cloud Computing: From Parallel Processing to Internet of Things", MK Publications, Elsevier

### **Reference Books**

- 1. Kamal Kant Hiran, et al. "Cloud Computing: Master the concepts, Architecture and Applications with Real-world examples and Case Studies", 1st Edition, BPB Publication.
- 2. Judith Hurwitz, "Cloud Computing for dummies", 2nd Edition, Wiley India.
- 3. A. Srinavasan, J. Suresh, "Cloud Computing: A Practical Approach for Learning and 5. Implementation", Pear

| Strength of CO-PO Mapping |                       |                                                                                                                                                                       |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                       |                                                                                                                                                                       |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                             | РО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                         | 2                     | 3                                                                                                                                                                     | 4                                                      | 5                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                         | -                     | 1                                                                                                                                                                     | -                                                      | 2                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                         | -                     | 1                                                                                                                                                                     | -                                                      | 2                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                         | -                     | 1                                                                                                                                                                     | -                                                      | 2                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                         | -                     | 1                                                                                                                                                                     | -                                                      | 2                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | 1<br>2<br>2<br>2<br>2 | 1         2           2         -           2         -           2         -           2         -           2         -           2         -           2         - | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1         2         3         4         5           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2           2         -         1         -         2 | Strength of         1       2       3       4       5       6         2       -       1       -       2       -         2       -       1       -       2       -         2       -       1       -       2       -         2       -       1       -       2       -         2       -       1       -       2       -         2       -       1       -       2       -         2       -       1       -       2       - | I         2         3         4         5         6         7           1         2         3         4         5         6         7           2         -         1         -         2         -         -           2         -         1         -         2         -         -           2         -         1         -         2         -         -           2         -         1         -         2         -         -           2         -         1         -         2         -         -           2         -         1         -         2         -         -           2         -         1         -         2         -         - | Strength of CO-PO Mapp         PO       PO         1       2       3       4       5       6       7       8         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       -         2       -       1       -       2       -       -       - | Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9         1       2       3       4       5       6       7       8       9         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       - | Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -         2       -       1       -       2       -       -       -       -       - | Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11         2       -       1       -       2       -       -       -       -       -         2       -       1       -       2       -       -       -       -       -       -         2       -       1       -       2       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <th< td=""><td>Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11       12         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1<!--</td--><td>Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11       12       PSO1         2       -       1       -       2       -       -       -       -       1       12       PSO1         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2</td></td></th<> | Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11       12         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1         2       -       1       -       2       -       -       -       -       1 </td <td>Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11       12       PSO1         2       -       1       -       2       -       -       -       -       1       12       PSO1         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2</td> | Strength of CO-PO Mapping         PO         1       2       3       4       5       6       7       8       9       10       11       12       PSO1         2       -       1       -       2       -       -       -       -       1       12       PSO1         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       2       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2       -       1       -       -       -       -       -       1       -         2 |

| <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b> |                                                           |                       |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|--|--|--|--|
| Sr. No.                                                                    | <b>Components for Continuous Comprehensive Evaluation</b> | <b>Marks</b> Allotted |  |  |  |  |
| 1                                                                          | Assignments on each Unit                                  | 10                    |  |  |  |  |
| 2                                                                          | LMS Test on Each Unit                                     | 10                    |  |  |  |  |
|                                                                            | Total                                                     | 20                    |  |  |  |  |

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| T. Y. B. Tech. Robotics and Automation<br>Pattern 2022, Semester: VI<br>ROB223015A: Name of Subject: Elective III (A) Finite Element Analysis                                                                                                                                                                                                                                                                                                                                                       |                                                             |                            |                                                                  |                         |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|------------------------------------------------------------------|-------------------------|--|--|--|--|--|
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Teaching Scheme:     Credit Scheme:     Examination Scheme: |                            |                                                                  |                         |  |  |  |  |  |
| Theory :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03hrs/week                                                  | 03                         | In Sem Exam: 20 Marks<br>End Sem Exam: 60 Marks<br>CCE: 20 Marks |                         |  |  |  |  |  |
| Prerequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isite Courses: - Engineering                                | g Mechanics, Design of M   | Aachine Element                                                  | S                       |  |  |  |  |  |
| Course Objectives:<br>Understand the finite element analysis problems<br>Analyze the problems of Trusses<br>Analyze the two-dimensional problem using constant strain triangles problems<br>Analyze the Dynamic analysis problems                                                                                                                                                                                                                                                                   |                                                             |                            |                                                                  |                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | Course Outcomes            |                                                                  | Bloom's Level           |  |  |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Model and analyse 1D and                                    | 2D problems                |                                                                  | 2. Understand           |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Perform finite element mo<br>iso-parametric elements        | delling of triangular elem | nent and 2-D                                                     | 3 Apply                 |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyse truss subjected to                                  | loading                    |                                                                  | 4 Analyze               |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyse steady state heat t and convection                  | ransfer - 1D and 2D heat   | conduction                                                       | 3 Apply                 |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Identify meshing technique                                  | es quality aspects of mesl | hing                                                             | 3 Apply                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | COURSE CONTENT             | <b>TS</b>                                                        |                         |  |  |  |  |  |
| Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Introduction                                                |                            | (07 hrs)                                                         | COs Mapped:<br>CO1, CO2 |  |  |  |  |  |
| Introduction, One Dimensional Problem, Finite Element modeling, Coordinate and Shape function, Derivation of stiffness matrix and Load Vector using Potential Energy approach, Properties of Stiffness Matrix, Assembly of Global Stiffness Matrix and Load Vector, Elimination and penalty approach, shape function, Quadratic Shape Function. Steady state heat transfer - 1D and 2D heat conduction and convection, governing differential equation, boundary conditions, formulation of element |                                                             |                            |                                                                  |                         |  |  |  |  |  |

| Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit II Trusses                                                     |                                |                       |                       |                                |                          | (07 ]             | hrs)                |                 | COs M<br>CO2, C         | lapped<br>CO3     | 1:         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|-----------------------|-----------------------|--------------------------------|--------------------------|-------------------|---------------------|-----------------|-------------------------|-------------------|------------|
| Introduction to different approaches used in FEA such as direct approach, Variational approach, weighted residual, energy approach, Galerkin and Raleigh Ritz approach, Introduction to Plane trusses, Assembly of global Stiffness Matrix for Banded Skyline solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |                                |                       |                       |                                |                          |                   |                     |                 |                         |                   |            |
| Unit III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit III Two-Dimensional Problem Using Constant<br>Strain Triangles |                                |                       |                       |                                | nt                       | ( <b>07</b> ]     | hrs)                |                 | COs Mapped:<br>CO3, CO4 |                   |            |
| Introduction, finite element formulation, load considerations and boundary conditions, problem modelling, member end forces, plane frame. Formulation of elemental stiffness matrix and load vector for Plane stress/strain such as Linear Strain Rectangle (LSR), Constant Strain Triangles (CST), Pascal's triangle, primary and secondary variables, properties of shape functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                |                       |                       |                                |                          |                   |                     |                 |                         |                   |            |
| Unit IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Axi-symme<br>symmetric                                              | etric soli<br>loading          | ds subje              | cted to               | axi-                           |                          | (0'<br>hrs)       | 7                   |                 | COs M<br>CO4, C         | apped<br>CO5      | l:         |
| Introduction<br>dimensiona<br>higher orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n, axi-symm<br>l iso-param<br>r elements                            | etric for<br>etric ele         | mulation,<br>ments, I | , finite (<br>ntroduc | element<br>tion, fo            | mode<br>ur no            | lling o<br>de qua | of trian<br>adrilat | igular<br>eral, | elemer<br>introdu       | nts, Ty<br>oction | vo<br>to   |
| Unit V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | Dyna                           | mic anal              | ysis                  |                                |                          | (07               | hrs)                |                 | COs M<br>CO4, C         | apped<br>CO5      | l:         |
| lumped and<br>free vibrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Consistent<br>on- Eigenv<br>and mode s                              | mass, M<br>value pro<br>hapes) | ass matri<br>blem, E  | ces for<br>valuation  | mulation<br>on of e<br>ence Bo | n of ba<br>igenva<br>oks | ar and alues      | beam<br>and e       | eleme<br>igenv  | ent. Une<br>vectors     | dampe<br>(natu    | :d-<br>ral |
| <ol> <li>I. Dary L. Logan, A First Course in the Finite Element Method,</li> <li>R. D. Cook, Concepts and Applications of Finite Element Analysis, Wiley, India</li> <li>Chandrupatla T. R. and Belegunda A. D., Introduction to Finite Elements in Engineering,<br/>Prentice Hall India.</li> <li>Seshu P., Text book of Finite Element Analysis, PHI Learning Private Ltd. New Delhi,<br/>2010.</li> <li>Bathe K. J., Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.</li> <li>Fagan M. J., Finite Element Analysis, Theory and Practice, Pearson Education Limited</li> <li>Kwon Y. W., Bang H., Finite Element Method using MATLAB, CRC Press, 1997</li> <li>S. Moaveni, Finite element analysis, theory and application with Ansys,</li> <li>Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill 8. Gokhale<br/>N. S., Deshpande S. S., Bedekar S.</li> <li>Thite A. N., Practical Finite Element Analysis, Finite to Infinite, Pune</li> </ol> |                                                                     |                                |                       |                       |                                |                          |                   |                     |                 |                         |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                | Stren                 | gth of (              | CO-PO N                        | Mappi                    | ng                |                     |                 |                         |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                   | 2                              | 3                     | 4                     | 5                              | PO<br>6                  | 7                 | 8                   | 9               | 10                      | 11                | 12         |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                   | -                              | -                     | -                     | -                              | -                        | 1                 | -                   | -               | -                       | -                 | -          |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                   | 1                              | 1                     | -                     | -                              | -                        | 1                 | -                   | -               | -                       | -                 | -          |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Cours | e                 |
|---------|--------------------------------------------------------------------|-------------------|
| Sr. No. | Components for Continuous Comprehensive Evaluation                 | Marks<br>Allotted |

-

1

1

1

-

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4

2

2

3

5

CO3

CO4

CO5

-

4

-

1

3

| 1 | Tests on each unit using LMS                                 | 10 |
|---|--------------------------------------------------------------|----|
|   | (Each test for 20 M and total will be converted out of 10 M) |    |
| 2 | Timely Assignment Submission                                 | 10 |

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23) Pattern 2022

|                                                     | Robotics a<br>ROB223015B F                                                                                                                                                                                                                                              | T. Y. B. Tech.<br>nd Automation (Patter<br>Semester: VI<br>Sective-III(B)- Power 1 | rn 2022)<br>Electronics & Drives                                                 |                                        |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| Teaching                                            | g Scheme:                                                                                                                                                                                                                                                               | Credit Scheme:                                                                     | Examination Sche                                                                 | eme:                                   |  |  |  |
| Theory: 03<br>Practical:                            | 3 hours / week<br>2hrs/Week                                                                                                                                                                                                                                             | 03<br>01                                                                           | 03CCE: 20Marks01In Sem Exam: 20MarksEnd Sem Exam:60MarksTW-25MarksPR/OR-25 Marks |                                        |  |  |  |
| Prerequi<br>Fundame                                 | isite Courses: - Mathematic<br>entals of Electrical Engineer                                                                                                                                                                                                            | s, Fundamentals of Ele                                                             | ctronics Engineering,                                                            |                                        |  |  |  |
| To enable<br>1. Underst<br>2. Underst<br>3. Underst | students to gain knowledge<br>and Fundamentals of power<br>tand The concepts and oper-<br>and Electrical Drives for Ro                                                                                                                                                  | and understanding in the electronic devices and ating principles of power obotics  | ne following aspects:<br>characteristics.<br>er electronics circuits.            |                                        |  |  |  |
| Course (                                            | <b>Dutcomes:</b> On completion of                                                                                                                                                                                                                                       | of the course, students w                                                          | vill be able to-                                                                 |                                        |  |  |  |
| CO1<br>CO2                                          | Course OutcomesBloom's Level1Examine the characteristics of various devices and application of<br>firing circuits used in power electronics.4-Analyze2Analyze the performance characteristics of AC voltage regulators,<br>4-Analyze4-Analyze                           |                                                                                    |                                                                                  |                                        |  |  |  |
| CO3                                                 | Analyze the operation and<br>configurations, including v                                                                                                                                                                                                                | performance of different<br>voltage and current-fed<br>ous conduction modes.       | nt chopper<br>choppers, in both                                                  | 4-Analyze                              |  |  |  |
| CO4<br>CO5                                          | CO4       Analyze the operating principles and characteristics of various electric motors to determine their suitability for robotics applications.       4-Analyze         CO5       Implement control techniques for electric drives to achieve desired       3-Apply |                                                                                    |                                                                                  |                                        |  |  |  |
|                                                     |                                                                                                                                                                                                                                                                         | COURSE CONTEN                                                                      | ITS                                                                              | 1                                      |  |  |  |
| Unit I                                              | Power Semicondu<br>Devices                                                                                                                                                                                                                                              | ictor                                                                              | (07hrs)                                                                          | COs Mapped -<br>CO1                    |  |  |  |
| Introduction<br>characteris<br>switches.            | on, Scope and Applicati<br>stics of Thyristors, MOSFI                                                                                                                                                                                                                   | on, Classification of<br>ET, IGBT, IGCT and                                        | Power Converters,<br>GTO, etc. Comparis                                          | Construction and<br>on of Controllable |  |  |  |

| Unit II | Rectifiers | (07hrs) | COs Mapped -<br>CO1, CO2 |
|---------|------------|---------|--------------------------|
|         |            |         |                          |

Single phase Converter: Fully controlled converter, Half controlled converter (Semi- converter)-Operation of all converters with R & RL load, derivation of Average and RMS output voltage , Three phase converters: Fully controlled converter, Half controlled converter (Semi converter)-Operation of all converters, Dual Converters, Numerical on converters. Application of Power Electronics: D.C. Motor Speed control

| Unit |                          | (06hrs) | Cos Mapped |
|------|--------------------------|---------|------------|
| III  | DC Choppers & AC Chopper |         | -CO2, CO3  |

Introduction, Classification, Basic Chopper Operation, Control strategies, Chopper configurations, Thyristor chopper circuits, Switched mode power supply: step down (buck), Step up (boost) and step down/step up (buck/boost) converters, Four Quadrant Operation of choppers.

AC Voltage Regulator- : Single phase AC Voltage regulator; operation with R and RL Load, derivation of Average and RMS output voltage, Three Phase Ac Regulator

| υ    |           |         |              |
|------|-----------|---------|--------------|
| Unit | INVERTERS | (07hrs) | COs Mapped – |
| IV   |           |         | CO2          |
|      |           |         |              |

Introduction, Classification, single phase half and full bridge VSI, Pulse Width Modulated Inverter(PWM) Inverters, Performance Parameters of Inverter, Voltage control of single phase Inverter, Series inverter, Parallel inverter, Current Source Inverter, Thyristor based Inverters

| Unit V | Electrical Drives<br>for Robotics | (07hrs) | COs Mapped -<br>CO4,CO5 |
|--------|-----------------------------------|---------|-------------------------|
|        |                                   |         |                         |

Overview of electric drives and their significance in robotics, Role of electrical drives in enabling motion control in robots, Classification of electric motors: DC, AC (induction, synchronous), Schemes for DC Motor Speed control, DC Chopper Drives, Control of AC Drives: Basic Principle of operation, Speed control of Induction Motor, Synchronous Motor Drives, stepper Operating principles and characteristics of electric motors, Selection criteria for motors in robotics applications, control techniques for electric drive, power Electronics Converters for motor drives

| Unit | Contents                       | Blooms<br>Taxonomy<br>Level | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|------|--------------------------------|-----------------------------|---------------|--------------|---------------|
| Ι    | Power Semiconductor Devices    | 4                           | 1             | 1,2          | 1             |
| II   | Rectifiers                     | 4                           | 1,2           | 1,2,3,4      | 1,2           |
| III  | DC Choppers & AC Chopper       | 4                           | 2,3           | 1,2,3,4      | 1,2           |
| IV   | INVERTERS                      | 4                           | 2             | 1,2,3,4,5    | 1,2           |
| V    | Electrical Drives for Robotics | 3,4                         | 4,5           | 1,2,3,4,5    | 1,2           |

#### **Text Books**

[T1] M. H. Rashid - Power Electronics 2nd Edition, Pearson publication.

[T2] Ned Mohan, T.M. Undel and, W.P. Robbins - Power Electronics, 3rd Edition, John Wiley and Sons

[T3] B.W. Williams: Power Electronics 2nd edition, John Wiley and sons

[T4] Ashfaq Ahmed- Power Electronics for Technology, LPE Pearson Edition

[T5] Dr. P.S. Bimbhra, Power Electronics, Third Edition, Khanna Publication

[T6] K. Hari Babu, Power Electronics, Scitech Publication.References

### **Reference Books**

1] P. S. Bimbhra, "Power Electronics", Khanna Publishers, New Delhi.

2] M.D. Singh, K B Khanchandani, 'Power Electronics', second edition, TATA McGraw Hill.

3] Vedam Subramanyam, "Power Electronics – Devices, Converters and Applications", Revised 2nd edition, New Age Publications.

4] Dubey, Joshi and Doradla, "Thyristorised controller", New age Publication.

5] B. K. Bose, 'Modern Power Electronics & AC Drives', Prentice Hall India.

|        | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                   |  |  |  |  |
|--------|---------------------------------------------------------------------|-------------------|--|--|--|--|
| Sr.No. | Components for Continuous Comprehensive Evaluation                  | Marks<br>Allotted |  |  |  |  |
| 1      | Assignments                                                         | 10                |  |  |  |  |
|        | (Total 3Assignment, Unit I and II 20marks, Unit III and IV20marks   |                   |  |  |  |  |
|        | and Unit V10 marks &50 marks will be converted to 10 Marks)         |                   |  |  |  |  |
| 2      | Tests on each unit using LMS                                        | 10                |  |  |  |  |
|        | (Each test for 15 M and total will be converted out of 10M)         |                   |  |  |  |  |

# K. K. Wagh Institute of Engineering Education and Research, Nashik ( Autonomous from Academic Year 2022-23)

| T. Y. B. Tech.<br>Pattern 2022 Semester: VI<br>Course Code: ROB223015Tech.<br>Pattern 2022 Semester: VI<br>Course Name :Elective III(C) Swarm Intelligence for Robotics |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                  |                                                                                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Teaching                                                                                                                                                                | g Scheme:                                                                                                                                                                              | Credit Scheme:                                                                                                                                 | Examination                                                                                      | Scheme:                                                                                                                   |  |  |
| Theory :                                                                                                                                                                | 03hrs/week                                                                                                                                                                             | 03                                                                                                                                             | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks   |                                                                                                                           |  |  |
| Prerequis                                                                                                                                                               | ite Courses: - Artificial Inte                                                                                                                                                         | elligence for Robotics, Ro                                                                                                                     | obot Path Plann                                                                                  | iing                                                                                                                      |  |  |
| 1. Ur<br>2. Le<br>tas<br>3. Ex<br>pro<br>4. Stu<br>5. Di<br>ave                                                                                                         | Iderstand swarm intelligence<br>arn Particle Swarm Optimiz<br>ks.<br>plore Ant Colony Optimizat<br>oblems.<br>Idy Artificial Bee Colony (A<br>scover robotics applications<br>oidance. | e principles and its applic<br>ation (PSO) mechanics, p<br>tion (ACO) principles and<br>ABC) algorithm and its va<br>of swarm intelligence, in | ations in roboti<br>parameters, and<br>d its application<br>ariants for optim<br>cluding path pl | cs.<br>variants for optimization<br>in solving combinatorial<br>nization tasks.<br>lanning and obstacle                   |  |  |
| Course (                                                                                                                                                                | <b>Dutcomes:</b> On completion o                                                                                                                                                       | f the course, students wil                                                                                                                     | ll be able to                                                                                    |                                                                                                                           |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                        | Course Outcomes                                                                                                                                |                                                                                                  | Bloom's Level                                                                                                             |  |  |
| CO1                                                                                                                                                                     | Demonstrate the working j                                                                                                                                                              | principles of swarm intell                                                                                                                     | igent algorithm                                                                                  | ns 1                                                                                                                      |  |  |
| CO2                                                                                                                                                                     | Tune algorithm specific pa<br>for given application                                                                                                                                    | rameters of swarm intell                                                                                                                       | igence algorith                                                                                  | ms 2                                                                                                                      |  |  |
| CO3                                                                                                                                                                     | Apply swarm intelligence                                                                                                                                                               | algorithms for robotics ap                                                                                                                     | pplications                                                                                      | 3                                                                                                                         |  |  |
| CO4                                                                                                                                                                     | Evaluate the performance                                                                                                                                                               | of swarm intelligent algo                                                                                                                      | rithm                                                                                            | 3                                                                                                                         |  |  |
| CO5                                                                                                                                                                     | Modify the algorithm suita                                                                                                                                                             | bly for new applications                                                                                                                       |                                                                                                  | 3                                                                                                                         |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                        | COURSE CONTENT                                                                                                                                 | S                                                                                                |                                                                                                                           |  |  |
| Unit I                                                                                                                                                                  | Introduction to swarm intelligence(7hrs)Cos Mapped<br>CO1                                                                                                                              |                                                                                                                                                |                                                                                                  |                                                                                                                           |  |  |
| Basic phil<br>Models o<br>optimizati<br><u>firefly alg</u><br><b>Unit II</b>                                                                                            | osophy, Need of swarm in<br>f swarm behaviour, introdu-<br>on, ant colony optimization<br>prithm etc. Applications of s<br>Particle swarm                                              | telligence, Traditional ap<br>uction to swarm intellig<br>a, artificial bee colony, s<br>swarm intelligence to rob<br>optimization             | oproach vs. Sw<br>gence methods<br>shuffled frog le<br>otics systems<br>( <b>7hrs</b> )          | <ul> <li>arm intelligence,</li> <li>Particle swarm</li> <li>eaping algorithm,</li> <li>Cos Mapped</li> <li>CO2</li> </ul> |  |  |
| Introduction<br>convergent<br>algorithm                                                                                                                                 | on, Mechanism of working<br>ce criteria, adaptive mecha<br>- convergence rate and accu                                                                                                 | of particle swarm opti<br>nisms, variants of PSO<br>racy, termination criteria                                                                 | mization algor<br>algorithm, hyb                                                                 | ithm, parameter selection, ridization, performance of                                                                     |  |  |

| Unit | Ant colony optimization | (7hrs) | Cos Mapped |
|------|-------------------------|--------|------------|
| III  |                         |        | CO3        |

Introduction, Mechanism of working of ant colony optimization algorithm, collective intelligence, parameter selection, convergence, elitist ant system, Rank based ant systems, recursive ant colony optimization, Applications to combinatorial optimization problems.

| Unit | Artificial bee colony optimization | (7hrs) | Cos Mapped |
|------|------------------------------------|--------|------------|
| IV   |                                    |        | CO4        |

Artificial bee colony meta-heuristic: Initialization, employed bees, onlooker bees, scout bees, honey foraging behavior, Global Guided ABC Algorithm, Hybrid Guided Artificial Bee Colony (HGABC) Algorithm, hybridized artificial bee colony with simulated annealing, genetic algorithm etc.

| Unit V | Applications of swarm intelligence in | (7hrs) | Cos Mapped |
|--------|---------------------------------------|--------|------------|
|        | robotics                              |        | CO4        |

Swarm intelligence in following robotics applications: Robot path planning, Trajectory generation, inverse kinematics and dynamics, Robotic controller design, robot clustering, robot sorting, robot collaboration, Obstacle avoidance etc.

#### **Text Books**

- 1. Aboul Ella Hassanien, Eid Emary, 'Swarm Intelligence: Principles, Advances, and Applications', CRC Press, ISBN: 9781498741071
- 2. Pakize Erdogmus (Ed.) 'Particle Swarm Optimization with Applications', IntechOpen, ISBN: 9781789231489

#### **Reference Books**

- 1. Christian Blum, Daniel Merkle, Swarm Intelligence: Introduction and Applications, Springer, ISBN: 9783540740896
- 2. Pawar P. J., 'Evolutionary Computations for Manufacturing', Studium Press, 2019, ISBN: 978-93-85046-52-0

| Strength of CO-PO Mapping |   |    |   |   |   |   |   |   |   |    |    |    |      |      |
|---------------------------|---|----|---|---|---|---|---|---|---|----|----|----|------|------|
|                           |   | PO |   |   |   |   |   |   |   |    |    |    |      |      |
|                           | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | PSO1 | PSO2 |
| CO1                       | 2 | 1  | 2 | - | 2 | - | - | - | - | -  | -  | 1  | 1    | -    |
| CO2                       | 2 | 1  | 2 | - | 2 | - | - | - | - | -  | -  | 1  | 1    | -    |
| CO3                       | 2 | 1  | 2 | - | 2 | - | - | - | - | -  | -  | 1  | 1    | -    |
| CO4                       | 2 | 1  | 2 | - | 2 | _ | - | - | _ | _  | -  | 1  | 1    | _    |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |    |  |  |  |  |  |
|---------|---------------------------------------------------------------------|----|--|--|--|--|--|
| Sr. No. | Sr. No. Components for Continuous Comprehensive Evaluation          |    |  |  |  |  |  |
| 1       | Assignments on each Unit                                            | 10 |  |  |  |  |  |
| 2       | LMS Test on Each Unit                                               | 10 |  |  |  |  |  |
|         | Total                                                               | 20 |  |  |  |  |  |

# K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| S. Y. B. Tech. Robotics and Automation<br>Pattern 2022, Semester: VI<br>223015A: Name of Subject: Elective III Automobile Engineering                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                             |                                              |                              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|----------------------------------------------|------------------------------|--|--|--|
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Teaching Scheme:Credit Scheme:Examination Scheme:  |                             |                                              |                              |  |  |  |
| Theory :(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )3hrs/week                                         | 03                          | In Sem Exam:<br>End Sem Exar<br>CCE: 20 Marl | 20 Marks<br>n: 60 Marks<br>s |  |  |  |
| Prerequi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | site Courses: - I. C. Engine                       | , Thermodynamics, Basic     | c Electrical & El                            | ectronics                    |  |  |  |
| Course Objectives:<br>Understand basics of Automobile Engineering & various Automotive system<br>Understand vehicle layout, vehicle specifications & important of automobile<br>To make the student conversant with drive train & transmission<br>To make the student conversant with Suspension, Steering, Brakes systems & Tyre Wheel assembly.                                                                                                                                                                    |                                                    |                             |                                              |                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | Course Outcomes             |                                              | Bloom's Level                |  |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand various transm                          | nission systems, Suspens    | ion, brakes,                                 | 2. Understand                |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyze Vehicle Performance & Vehicle Safety 3. An |                             |                                              |                              |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Handle technical & mana                            | gement problems in auto     | motive industries                            | 3. Analyze                   |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diagnosis the faults of aut                        | omobile vehicles            |                                              | 4. Apply                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | COURSE CONTENT              | ſS                                           |                              |  |  |  |
| Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Introduction to Automo                             | bile Engineering            | (07 hrs)                                     | COs Mapped:<br>CO1, CO2      |  |  |  |
| Automobile history and development, current scenario in Indian auto/ ancillary industries, Role of the automobile industry in national growth, Classification, types of chassis layout with reference to power plant locations and drive, Vehicle frames, Various types of frames. Constructional details, Unitised frame body construction, Loads acting on vehicle frame, details of chassis material.                                                                                                             |                                                    |                             |                                              |                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                             |                                              | CO2, CO3                     |  |  |  |
| Classification of clutches, Single plate & with dual flywheel effect, Multi plate, Cone, diaphragm<br>spring, Centrifugal, Clutch materials, Clutch plate, Electromagnetic, vacuum operated, Necessity of<br>gear box, Manual gear box-Constant mesh, Sliding mesh, Synchromesh, Epicyclic, fluid flywheel,<br>Torque convertor, Continuous variable transmission, Electronic transmission control, overdrive,<br>Propeller Shaft, Universal Joint, Differential and final drive, hotchkiss drive, torque tube drive |                                                    |                             |                                              |                              |  |  |  |
| Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Front & Rear Axle, Sto<br>& Ty                     | eering System, Wheel<br>res | (07 hrs)                                     | COs Mapped:<br>CO3, CO4      |  |  |  |

Axle: Purpose and requirement of front & rear axle, live and dead axles types & arrangement, types of loads acting on rear axles, full floating, three quarter floating and semi floating rear axles. Steering System: Steering mechanism, steering geometry, cornering force, slip angle, scrub radius, steering characteristic, steering linkages & gearbox, power steering, collapsible steering, reversibility of steering, four wheel steering. Wheel and Tyres: Wheel construction, alloy wheel, wheel alignment and balancing, type of tyres, tyre construction, tyre materials, factors affecting tyre life.

| Unit IV | Suspension & Brakes System | (07<br>hrs) | COs Mapped:<br>CO3, CO4 |  |
|---------|----------------------------|-------------|-------------------------|--|
|---------|----------------------------|-------------|-------------------------|--|

Sprung and unsprung mass, types of suspension linkages, types of suspension springs- leaf, coil, air springs, hydro gas, rubber suspension, interconnected suspension, self leveling suspension (active suspension), damping and shock absorbers Types of brake systems - drum, disc, operation-mechanical, hydraulic, air brakes, servo and power braking, hand brake, ABS.

| Unit V | Vehicle Performance, Safety & Modern | (07 hrs) | COs Mapped: |
|--------|--------------------------------------|----------|-------------|
|        | Trends & Vehicle maintenance         |          | CO3, CO4    |

Vehicle performance parameters, road resistance, traction and tractive effort, power requirement for propulsion, road performance curves(Numerical treatment expected), Stability of vehicles, roll over safety regulations, Vehicle safety- active, passive safety, air bags, seat belt, Vehicle interior and ergonomics, comfort, NVH in automobiles, electrical car layout, hybrid vehicles, Solar operated vehicle, measuring instruments for wear, speed, acceleration, vibration, noise

Schedule maintenance chart of a vehicle, maintenance, overhauling & servicing of chassis, clutch, gear box, propeller shaft, differential, axles, steering system, wheels, tyres, suspension, brakes system, electrical system

### **Reference Books**

1. K. Newton and W. Seeds, T.K. Garrett, "Motor Vehicle", 13thEdition, Elsevier publications

2. Hans Hermann Braess, Ulrich Seiffen, "Handbook of Automotive Engineering ", SAE Publications.

3. William H. Crouse., "Automotive Mechanics", Tata McGraw Hill Publishing House.

4. Joseph Heitner, "Automotive Mechanics", C.B.S Publishers And Distributors.

5. SAE Manuals and Standards

6. Narang G. B. S, "Automobile Engineering", S. Chand and Company Ltd.

| Strength of CO-PO Mapping |   |   |   |   |   |    |   |   |   |    |    |    |
|---------------------------|---|---|---|---|---|----|---|---|---|----|----|----|
|                           |   |   |   |   |   | PO |   |   |   |    |    |    |
|                           | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       | 1 | - | 1 | - | - | -  | 1 | - | - | -  | -  | -  |
| CO2                       | 1 | - | 1 | - | - | -  | 2 | - | - | -  | -  | -  |
| CO3                       | 1 | 1 | - | 1 | - | -  | - | - | - | -  | -  | -  |
| CO4                       | - | - | 1 | - | 1 | -  | - | - | - | -  | -  | -  |
| CO5                       | 4 | 3 | 3 | 1 | 1 | -  | 4 | - | - | -  | -  | -  |

| Guidelines for Continuous Comprehensive Evaluation of Theory Course |                                                              |          |  |  |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------|----------|--|--|--|--|--|--|
| Sr. No.                                                             | Sr. No. Components for Continuous Comprehensive Evaluation   |          |  |  |  |  |  |  |
|                                                                     |                                                              | Allotted |  |  |  |  |  |  |
| 1                                                                   | Tests on each unit using LMS                                 | 10       |  |  |  |  |  |  |
|                                                                     | (Each test for 20 M and total will be converted out of 10 M) |          |  |  |  |  |  |  |
| 2                                                                   | Timely Assignment Submission                                 | 10       |  |  |  |  |  |  |

| T. Y. B. Tech.<br>Robotics and Automation                                                         |                                                                                                                                                                                       |                                                     |                                       |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|--|--|--|--|
| Pattern2022, Semester: VI<br>223016A Name of Subject: Elective III(A) Finite Element Analysis Lab |                                                                                                                                                                                       |                                                     |                                       |  |  |  |  |
| Teaching Sch                                                                                      | eme:                                                                                                                                                                                  | Credit<br>Scheme:                                   | Examination Scheme:                   |  |  |  |  |
| Practical:02h                                                                                     | rs./week                                                                                                                                                                              | 01                                                  | Term work : 25Marks<br>Oral :25 Marks |  |  |  |  |
| Prerequisite (                                                                                    | Courses: Engineering Mec                                                                                                                                                              | hanics, Desig                                       | gn of Machine Elements                |  |  |  |  |
| Course Objec                                                                                      | tives:                                                                                                                                                                                |                                                     |                                       |  |  |  |  |
| Course                                                                                            |                                                                                                                                                                                       | Descri                                              | ption                                 |  |  |  |  |
| Objectives                                                                                        | The course aims :                                                                                                                                                                     |                                                     |                                       |  |  |  |  |
| 1                                                                                                 | Understand Fundamentals                                                                                                                                                               | Understand Fundamentals of Finite Element Analysis. |                                       |  |  |  |  |
| 2                                                                                                 | Understand theory and characteristics of finite elements that represent<br>engineering structures                                                                                     |                                                     |                                       |  |  |  |  |
| 3                                                                                                 | To learn and apply finite element solutions to structural, thermal, dynamic<br>problem to develop the knowledge and skills needed to effectively evaluate<br>finite element analyses. |                                                     |                                       |  |  |  |  |

| Course   | Description                                                         | Blooms Level |
|----------|---------------------------------------------------------------------|--------------|
| Outcomes | On completion of the course, students will be able to-              |              |
| CO1      | Examine different mathematical Techniques used in FEM analysis and. | 4-Analyze    |
| CO2      | Analyze the problems of Nodes and elements                          | 4-Analyze    |
| CO3      | Analyze the use of FEA in Structural and thermal problem            | 4-Analyze    |
| CO4      | Analyze the applications of FEA in heat transfer problem            | 4-Analyze    |
| CO5      | Implement finite element modeling techniques                        | 3-Apply      |

# Course context, Relevance, Practical Significance:

The course typically covers fundamental concepts Based on the finite element method (FEM), it is a technique that makes use of computers to predict the behavior of varied types of physical systems, such as the deformation of solids, heat conduction, and fluid flow.

### **Course Contents: (Perform any 7)**

| Assignment/<br>Experime<br>nt | Contents                                                                   | Pr.Hrs. |
|-------------------------------|----------------------------------------------------------------------------|---------|
| 1                             | <b>Computer</b> program for axial bar subjected to axial forces            | 2       |
| 2                             | Computer program for truss subjected to plane forces                       | 2       |
| 3                             | Computer program for beams subjected to transverse forces and moments      | 2       |
| 4                             | Computer program for frames subjected to transverse forces and moments     | 2       |
| 5                             | Stress and deflection analysis of two dimensional truss using FEA software | 2       |

| 6  | Stress and deflection analysis of any machine component    | 2 |
|----|------------------------------------------------------------|---|
|    | consisting of 2-D elements using FEA software              |   |
| 7  | Stress and deflection analysis of any machine component    |   |
|    | consisting of 3-D elements using FEA software              |   |
| 8  | Modal analysis of any machine components                   | 2 |
| 9  | Computer program for 1-D temperature analysis              | 2 |
| 10 | Thermal analysis of member subjected to loading            | 2 |
| 11 | Shear force and Bending Moment Calculations of Shaft using | 2 |
|    | FEA software                                               |   |
| 12 | Analysis of component subjected to self-weight             |   |
| 13 | Thermal analysis of composite wall                         |   |

# **Course Mapping:**

| Experi<br>ment | Contents                                                                                                    | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|----------------|-------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|
| 1              | Computer program for axial bar subjected to axial forces                                                    | 1,2           | 1,2          | 1             |
| 2              | Computer program for truss subjected to plane forces                                                        | 1,2           | 1,2          | 1             |
| 3              | Computer program for beams subjected to transverse forces and moments                                       | 2             | 1,2,3,4      | 1             |
| 4              | Computer program for frames subjected to transverse forces and moments                                      | 2,3           | 1,2,4        | 1             |
| 5              | Stress and deflection analysis of two dimensional truss using FEA software                                  | 2,3           | 1,2          | 1             |
| 6              | Stress and deflection analysis of any machine<br>component consisting of 2-D elements using FEA<br>software | 2             | 1,2          | 1             |
| 7              | Stress and deflection analysis of any machine<br>component consisting of 3-D elements using FEA<br>software | 2             | 1,2          | 1             |
| 8              | Modal analysis of any machine components                                                                    | 4,5           | 1,2,4,5      | 1             |
| 9              | Computer program for 1-D temperature analysis                                                               | 4,5           | 1,2,3,4,5    | 1,2           |
| 10             | Thermal analysis of member subjected to loading                                                             | 4,5           | 1,2,3,4,5    | 1,2           |
| 11             | Shear force and Bending Moment Calculations of Shaft using FEA software                                     | 4,5           | 1,2,3,4,5    | 1,2           |
| 12             | Analysis of component subjected to self-weight                                                              | 4,5           | 1,2,3,4,5    | 1,2           |
| 13             | Thermal analysis of composite wall                                                                          | 4,5           | 1,2,3,4,5    | 1,2           |

| T. Y. B. Tech.                              |                                                                          |              |                              |  |
|---------------------------------------------|--------------------------------------------------------------------------|--------------|------------------------------|--|
| <b>Robotics and Automation Pattern2022,</b> |                                                                          |              |                              |  |
|                                             | Semester                                                                 | r: VI        |                              |  |
|                                             | 223016B Elective                                                         | e-III(B) Pov | ver Electronics & Drives Lab |  |
| Teaching Scl                                | heme:                                                                    | Credit       | Examination Scheme:          |  |
|                                             |                                                                          | Scheme:      |                              |  |
| Practical:02                                | hrs./week                                                                | 01           | Term work : 25 Marks         |  |
|                                             |                                                                          |              | Oral :25 Marks               |  |
|                                             |                                                                          |              |                              |  |
| Prerequisite                                | <b>Courses:</b> Mathematics. F                                           | undamentals  | of Electronics Engineering.  |  |
| Fundamental                                 | s of Electrical Engineering                                              |              |                              |  |
| Course Obie                                 | ctives:                                                                  |              |                              |  |
| Course                                      | Description                                                              |              |                              |  |
| Objectives                                  | The course aims :                                                        |              |                              |  |
| 1                                           | Understand Fundamentals of power electronic devices and characteristics. |              |                              |  |
|                                             | 1                                                                        |              |                              |  |
| 2                                           | Understand The concepts and operating principles of power electronics    |              |                              |  |
|                                             | circuits.                                                                |              |                              |  |
| 3                                           | Electrical Drives for Robotics                                           |              |                              |  |
| -                                           |                                                                          |              |                              |  |

| Course   | Description                                                                                                                                                                             | Blooms Level |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Outcomes | On completion of the course, students will be able to-                                                                                                                                  |              |
| CO1      | Examine the characteristics of various devices and application of firing circuits used in power electronics.                                                                            | 4-Analyze    |
| CO2      | Analyze the performance characteristics of AC voltage regulators, choppers, inverters, rectifiers                                                                                       | 4-Analyze    |
| CO3      | Analyze the operation and performance of different<br>chopper configurations, including voltage and current-<br>fed choppers, in both continuous and discontinuous<br>conduction modes. | 4-Analyze    |
| CO4      | Analyze the operating principles and characteristics of<br>various electric motors to determine their suitability for<br>robotics applications.                                         | 4-Analyze    |
| CO5      | Implement control techniques for electric drives to achieve desired motion control in robots                                                                                            | 3-Apply      |

### **Course context, Relevance, Practical Significance:**

The course typically covers fundamental concepts such as power semiconductor devices, converter topologies, control techniques, and applications in motor drives and power systems. Relevance is in industrial applications, power electronics and drives control the speed and torque of electric motors, enabling précis e and efficient operation in manufacturing processe

| <b>Course Contents:</b> | (Perform any 7) |
|-------------------------|-----------------|
|-------------------------|-----------------|

| Assignment/<br>Experime<br>nt | Contents                                                       | Pr.Hrs. |
|-------------------------------|----------------------------------------------------------------|---------|
| 1                             | Study of Single phase Half Wave Half Controlled Rectifier with | 2       |
|                               | R & RL Load                                                    |         |

| 2  | Study of Single phase Wave Half Controlled bridge Rectifier  | 2 |
|----|--------------------------------------------------------------|---|
|    | with R & RL Load                                             |   |
| 3  | Study of 3- phase AC to DC full controlled converter.        | 2 |
|    |                                                              |   |
| 4  | Study of DC –DC Buck Converter                               | 2 |
| 5  | Study of DC-DC Boost Converter                               | 2 |
| 6  | Single phase A.C. voltage regulator with R and RL load using | 2 |
|    | Diac & Triac                                                 |   |
| 7  | Single phase A.C. voltage regulator with R and RL load using |   |
|    | Thyristor                                                    |   |
| 8  | Study of VSI fed 3-Phase Induction motor(using v/f control   | 2 |
|    | PWM Inverter) Speed control characteristics                  |   |
|    |                                                              |   |
| 9  | Study of a Thyristor based DC-drive with closed loop speed   | 2 |
|    | control.                                                     |   |
| 10 | Study of speed control of PMSM Drive                         | 2 |
| 11 | Study of speed control of BLDC (Hardware)                    | 2 |

# **Course Mapping:**

| Experi<br>ment | Contents                                                                                               | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|----------------|--------------------------------------------------------------------------------------------------------|---------------|--------------|---------------|
| 1              | Study of Single phase Half Wave Half Controlled<br>Rectifier with R & RL Load                          | 1,2           | 1,2          | 1             |
| 2              | Study of Single phase Wave Half Controlled<br>bridge Rectifier with R & RL Load                        | 1,2           | 1,2          | 1             |
| 3              | Study of 3- phase AC to DC full controlled converter.                                                  | 2             | 1,2,3,4      | 1             |
| 4              | Study of DC –DC Buck Converter                                                                         | 2,3           | 1,2,4        | 1             |
| 5              | Study of DC-DC Boost Converter                                                                         | 2,3           | 1,2          | 1             |
| 6              | Single phase A.C. voltage regulator with R and RL load using diac & triac                              | 2             | 1,2          | 1             |
| 7              | Single phase A.C. voltage regulator with R and RL load using Thyristor                                 | 2             | 1,2          | 1             |
| 8              | Study of VSI fed 3-Phase Induction motor(using v/f control PWM Inverter) Speed control characteristics | 4,5           | 1,2,4,5      | 1             |
| 9              | Study of a Thyristor based DC-drive with closed loop speed control.                                    | 4,5           | 1,2,3,4,5    | 1,2           |
| 10             | Study of speed control of PMSM Drive                                                                   | 4,5           | 1,2,3,4,5    | 1,2           |
| 11             | Study of speed control of BLDC (Hardware)                                                              | 4,5           | 1,2,3,4,5    | 1,2           |

| T. Y. B. Tech.<br>Pattern 2022 Semester: VI<br>Course Code:<br>Course Name :Elective III(C) Swarm Intelligence for Robotics Lab |                                                                               |                   |                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|-------------------------------------------|--|
| Teaching Sc                                                                                                                     | heme:                                                                         | Credit<br>Scheme: | Examination Scheme:                       |  |
| Practical: 02                                                                                                                   | Practical: 02 hrs. /week01Term work : 25 marksOral: 25 Marks                  |                   |                                           |  |
| Prerequisite                                                                                                                    | Courses: Artificial Inte                                                      | elligence for Ro  | botics, Robot Path Planning               |  |
| Course Obje                                                                                                                     | ectives:                                                                      |                   |                                           |  |
| Course                                                                                                                          | Description                                                                   |                   |                                           |  |
| Objectives                                                                                                                      |                                                                               |                   |                                           |  |
| 1                                                                                                                               | Understand swarm inte                                                         | lligence princip  | les and its applications in robotics.     |  |
| 2                                                                                                                               | Learn Particle Swarm (                                                        | Optimization (P   | SO) mechanics, parameters, and variants   |  |
|                                                                                                                                 | for optimization tasks.                                                       |                   |                                           |  |
| 3                                                                                                                               | 3 Explore Ant Colony Optimization (ACO) principles and its application in     |                   |                                           |  |
|                                                                                                                                 | solving combinatorial problems.                                               |                   |                                           |  |
| 4                                                                                                                               | Study Artificial Bee Co                                                       | olony (ABC) alg   | gorithm and its variants for optimization |  |
|                                                                                                                                 | tasks.                                                                        |                   |                                           |  |
| 5                                                                                                                               | Discover robotics applications of swarm intelligence, including path planning |                   |                                           |  |
| and obstacle avoidance.                                                                                                         |                                                                               |                   |                                           |  |

### **Course Outcomes:**

| Course   | Description                                                             |  |  |
|----------|-------------------------------------------------------------------------|--|--|
| Outcomes |                                                                         |  |  |
| 1        | Demonstrate the working principles of swarm intelligent algorithms      |  |  |
| 2        | Tune algorithm specific parameters of swarm intelligence algorithms for |  |  |
|          | given application                                                       |  |  |
| 3        | Apply swarm intelligence algorithms for robotics applications           |  |  |
| 4        | Evaluate the performance of swarm intelligent algorithm                 |  |  |
| 5        | Modify the algorithm suitably for new applications                      |  |  |
|          |                                                                         |  |  |

### **Course context, Relevance, Practical Significance:**

The course on Swarm Intelligence offers students a deep dive into innovative problem-solving techniques inspired by nature. By studying principles like Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee Colony (ABC), students gain valuable insights into tackling complex optimization challenges. In today's rapidly evolving technological landscape, where efficient solutions are crucial across various industries, mastering swarm intelligence methods becomes highly relevant. The practical significance lies in their applicability to real-world problems, from optimizing supply chains to enhancing robotic systems. Ultimately, this course equips students with valuable skills sought after in fields where optimization and efficiency are paramount, ensuring their readiness to contribute meaningfully to modern problem-solving scenarios

# **Course Contents:**

| Sr.<br>No. | Contents                                      | Pr.<br>Hrs. |
|------------|-----------------------------------------------|-------------|
| 1          | Robot path planning and Trajectory generation | 2           |
| 2          | Inverse robot kinematics                      | 2           |
| 3          | Inverse robot dynamics                        | 2           |
| 4          | Robot controller design                       | 2           |
| 5          | Robot clustering and sorting                  | 2           |
| 6          | Obstacle avoidance                            | 2           |
| 7          | Robot vision system                           | 2           |

# **Course Mapping:**

| Assignment/ | Contents                                      | CO-    | PO     | PSO    |
|-------------|-----------------------------------------------|--------|--------|--------|
| Experiment  |                                               | mapped | mapped | mapped |
| 1           | Robot path planning and Trajectory generation | 1      | 1,2    | -      |
| 2           | Inverse robot kinematics                      | 2      | 1,2    | -      |
| 3           | Inverse robot dynamics                        | 2      | 1,2    | -      |
| 4           | Robot controller design                       | 3      | 1,2    | -      |
| 5           | Robot clustering and sorting                  | 4      | 1,2    | -      |
| 6           | Obstacle avoidance                            | 4      | 1,2    | -      |
| 7           | Robot vision system                           | 5      | 1,2    | -      |

|                         | ,                                                                  | TVDTaal       | h                                       |  |
|-------------------------|--------------------------------------------------------------------|---------------|-----------------------------------------|--|
| 1. Y. B. 1ecn.          |                                                                    |               |                                         |  |
| Robotics and Automation |                                                                    |               |                                         |  |
|                         | Pattern2022, Semester: VI                                          |               |                                         |  |
| 223016                  | A:Name of Subject: Elect                                           | tive III Auto | mobile Engineering Lab                  |  |
| Teaching Scheme:        |                                                                    | Credit        | Examination Scheme:                     |  |
|                         |                                                                    | Scheme:       |                                         |  |
| Practical:02hrs./week   |                                                                    | 01            | Term work : 25Marks                     |  |
|                         |                                                                    |               | Oral :25 Marks                          |  |
|                         |                                                                    |               |                                         |  |
|                         |                                                                    |               |                                         |  |
| Prerequisite (          | Courses: Basic Electrical &                                        | & Electronics | 8                                       |  |
| Course Objectives:      |                                                                    |               |                                         |  |
| Course                  | Description                                                        |               |                                         |  |
| Objectives              | The course aims :                                                  |               |                                         |  |
| 1                       | Understand Fundamentals of Automobile Engineering.                 |               |                                         |  |
|                         |                                                                    |               |                                         |  |
| 2                       | Understand theory and characteristics of every basic component of  |               |                                         |  |
| _                       | automobile                                                         |               | r i i i i i i i i i i i i i i i i i i i |  |
| 3                       | To learn and apply techniques used in sheeking and setting of each |               |                                         |  |
| 5                       | To rear and appry teeningues used in checking and setting of each  |               |                                         |  |
|                         | component of any vehicle                                           | 2             |                                         |  |

| Course   | Description                                             | Blooms Level |
|----------|---------------------------------------------------------|--------------|
| Outcomes | On completion of the course, students will be able to-  |              |
| CO1      |                                                         | 4-Analyze    |
|          | To maintain the electrical, electronic and mechanical   |              |
|          | systems that are part of the automotive vehicles        |              |
| CO2      | To determine mechanical failures in gasoline and diesel | 4-Analyze    |
|          | vehicle engines, in accordance with the principles of   | -            |
|          | electromechanical operation using electronic diagnostic |              |
|          | equipment                                               |              |
| CO3      | To participate in production systems in the automotive  | 4-Analyze    |
|          | industry                                                |              |
| CO4      | To adapt electromechanical, pneumatic, and hydraulic    | 4-Analyze    |
|          | equipment using modern technology                       | -            |

# **Course context, Relevance, Practical Significance:**

Automotive engineering draws on almost all areas of engineering: thermodynamics and combustion, fluid mechanics and heat transfer, mechanics, stress analysis, materials science, elec- tronics and controls, dynamics, vibrations, machine design, linkages, and so forth.

# **Course Contents: (Perform any 7)**

| Assignment/<br>Experime<br>nt | Contents                                                   | Pr.Hrs. |
|-------------------------------|------------------------------------------------------------|---------|
| 1                             | Study of an Automobile Chassis                             | 2       |
| 2                             | Study of Differential Mechanism of an Automobile           | 2       |
| 3                             | Study of Multiple Clutch of an Automobile                  | 2       |
| 4                             | Study of Braking System (Hydraulic / Air Brake)            | 2       |
| 5                             | Study and Demonstration of different circuit of carburetor | 2       |
| 6                             | Checking the spark plug and setting the port and check the | 2       |

|   | ignition in the spark plug                   |   |
|---|----------------------------------------------|---|
| 7 | Study the Electrical System of an Automobile |   |
| 8 | Study the assembly of Car Engine             | 2 |

# **Course Mapping:**

| Experi<br>ment | Contents                                                                              | CO-<br>mapped | PO<br>mapped | PSO<br>mapped |
|----------------|---------------------------------------------------------------------------------------|---------------|--------------|---------------|
| 1              | Study of an Automobile Chassis                                                        | 1,2           | 1,2          | 1             |
| 2              | Study of Differential Mechanism of an Automobile                                      | 1,2           | 1,2          | 1             |
| 3              | Study of Multiple Clutch of an Automobile                                             | 2             | 1,2,3        | 1             |
| 4              | Study of Braking System (Hydraulic / Air Brake)                                       | 2,3           | 1,2,3        | 1             |
| 5              | Study and Demonstration of different circuit of carburetor                            | 2,3           | 1,2          | 1             |
| 6              | Checking the spark plug and setting the port and check the ignition in the spark plug | 2             | 1,2          | 1             |
| 7              | Study the Electrical System of an Automobile                                          | 2             | 2,3          | 1             |
| 8              | Study the assembly of Car Engine                                                      | 3,4           | 1,2,3        | 1             |
## (Autonomous from Academic Year 2022-23)

|                                                    | T<br>ROB                                                                                               | T. Y. B. Tech. Robotics and<br>Pattern 2022, Semes<br>223017: Name of Subjects                                | l Automation<br>ter: IV<br>Swarm Robotics                                    |                                                    |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|
| Teaching<br>Theory :                               | g Scheme:<br>03hrs/week                                                                                | Credit Scheme:                                                                                                | Examination Scheme                                                           | :                                                  |
| Course<br>Type:ES                                  | С                                                                                                      | 03                                                                                                            | In Sem Exam: 20 Ma<br>Sem Exam: 60 Mark<br>CCE: 20 Marks                     | rks End<br>s                                       |
| Prerequi                                           | site Courses: - N.A.                                                                                   |                                                                                                               |                                                                              |                                                    |
| Course C<br>1. To<br>2. Ab<br>app                  | <b>Dijectives:</b><br>make the students fami<br>le to implement basic S<br>blications.                 | liar with basic concepts and<br>warm algorithms for navig                                                     | l techniques of Swarm<br>ation and path planning                             | Robotics.<br>in robotic                            |
| Course C                                           | <b>Dutcomes:</b> On completi                                                                           | on of the course, students v                                                                                  | vill be able to-                                                             |                                                    |
|                                                    |                                                                                                        | <b>Course Outcomes</b>                                                                                        |                                                                              | Bloom's Level                                      |
| CO1                                                | Explain the fundament<br>swarm robotics, demo<br>contemporary challen                                  | tal principles, characteristic<br>onstrating knowledge of its<br>ges.                                         | cs, and applications of historical context and                               | 2-Understand                                       |
| CO2                                                | Demonstrate competer<br>algorithms for tasks su<br>and cooperative manip<br>challenges in dynamic      | nce in applying a range of s<br>ich as exploration, mapping<br>pulation, effectively address<br>environments. | warm robotics<br>, navigation,<br>ing real-world                             | 3-Apply                                            |
| CO3                                                | Examine emerging tr<br>in swarm robotics, de<br>impact and potential<br>technologies.                  | ends, ethical considerations<br>emonstrating an understand<br>applications of advanced sy                     | and future directions<br>ing of the societal<br>warm robotics                | 4-Analyse                                          |
| CO4                                                | Differentiate skills in<br>robotics architectures<br>distributed approache<br>cooperation among ro     | designing and implementing, including centralized, dec<br>es, to achieve efficient coord<br>obotic agents.    | ng various swarm<br>entralized, and<br>dination and                          | 4-Analyse                                          |
|                                                    |                                                                                                        | COURSE CONTEN                                                                                                 | NTS                                                                          |                                                    |
| Unit I                                             | Introduction to Swarm                                                                                  | Robotics                                                                                                      | (07 hrs.)                                                                    | COs Mapped:<br>CO1                                 |
| Definition<br>Characteri<br>Challenges             | and basic concepts of s<br>stics and advantages of<br>s and limitations of swa                         | warm robotics, History and<br>swarm robotics, Applicatic<br>rm robotics.                                      | evolution of swarm ro<br>ns of swarm robotics in                             | botics,<br>1 various fields,                       |
| Unit II                                            | Swarm                                                                                                  | Intelligence                                                                                                  | (07 hrs)                                                                     | COs Mapped:<br>CO2,CO3                             |
| Overview<br>colonies, b<br>algorithms<br>modelling | of swarm intelligence a<br>bird flocks, fish schools,<br>and techniques: Ant C<br>of swarm behaviours. | nd its relevance to swarm r<br>, etc. Emergent behaviour a<br>olony Optimization, Particl                     | obotics, Biological insp<br>nd self-organization in<br>e Swarm Optimization, | birations: ant<br>swarms, Key<br>etc. Mathematical |
| Unit III                                           | Swarm Rob                                                                                              | ootics Architectures                                                                                          | (07 hrs)                                                                     | COs Mapped:<br>CO2, CO3                            |

Centralized vs. decentralized vs. distributed architectures, Communication mechanisms in swarm robotics, Role differentiation and task allocation strategies, Coordination and cooperation mechanisms, Case studies of different swarm robotics architectures in real-world applications.

|         |                           | (07 hrs) | COs Mapped: |
|---------|---------------------------|----------|-------------|
| Unit IV | Swarm Robotics Algorithms |          | CO3,CO4     |
|         |                           |          |             |

Basic algorithms for swarm robotics: flocking, aggregation, dispersion, etc. Exploration and mapping algorithms in swarm robotics, Swarm navigation and path planning techniques, Cooperative manipulation and transportation algorithms, Swarm behaviour adaptation and learning algorithms.

| Unit V | Emerging Trends and Future Directions in | (07 hrs) | COs Mapped: |
|--------|------------------------------------------|----------|-------------|
| Unit v | Swarm Robotics                           |          | CO3,CO4     |

Multi-robot systems and swarm robotics, Swarm robotics in dynamic and uncertain environments Human-swarm interaction and collaboration, Swarm robotics for search and rescue missions, Ethical considerations and societal impacts of swarm robotics, Cutting-edge developments and future directions in swarm robotics.

- 1. "Swarm Robotics "edited by Giandomenico Spezzano, ISBN978-3-03897-922-7 (Paperback) ISBN978-3-03897-923-4 (PDF).
- 2. Swarm Robotics from Biology to Robotics. Edited by: Ester Martinez Martin. *ISBN 978-953-307-075-9*, PDF ISBN 978-953-51-5880-6, Published 2010-03-01.

|     | Strength of CO-PO Mapping |   |   |   |   |   |   |   |   |    |    |    |   |   |
|-----|---------------------------|---|---|---|---|---|---|---|---|----|----|----|---|---|
|     | РО                        |   |   |   |   |   |   |   |   |    |    |    |   | 0 |
|     | 1                         | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 |
| CO1 | 1                         | - | 1 | - | - | - | - | - | - | -  | -  | -  | 1 |   |
| CO2 | 1                         | - | 1 | - | - | - | - | - | - | -  | -  | -  | 1 |   |
| CO3 | 2                         | 2 | - | 1 | - | - | - | - | - | -  | -  | -  | 1 |   |
| CO4 | -                         | - | 1 | - | 1 | - | - | - | - | -  | -  | -  | 1 |   |
| CO5 | 2                         | 2 | 1 | 1 | 1 | - | - | - | - | -  | -  | -  | 1 |   |

| Guidelines for Continuous Comprehensive Evaluation of Theory Cours |                                                                       |          |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
| Sr. No.                                                            | Components for Continuous Comprehensive Evaluation (20 Marks)         |          |  |  |  |  |  |  |  |  |
|                                                                    |                                                                       | Allotted |  |  |  |  |  |  |  |  |
| 1                                                                  | Tests on each unit using LMS                                          | 10       |  |  |  |  |  |  |  |  |
|                                                                    | (Each test for 20 M and total will be converted to 10 M)              |          |  |  |  |  |  |  |  |  |
| 2                                                                  | Timely Assignment Submission on each unit for 15 marks and total will | 10       |  |  |  |  |  |  |  |  |
|                                                                    | be converted to 10 marks.                                             |          |  |  |  |  |  |  |  |  |

## K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                                          | S. Y. B. Tech. Robotics and Automation<br>Pattern 2022, Semester: VI<br>ROB223018: Name of Subject: Nutrition and Weight Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                          |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| Teaching                                                                 | Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Credit Scheme:                                                                             | Examination S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Schem                      | e:                                                       |  |  |  |  |  |  |
| Theory :<br>hrs/week                                                     | )2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02                                                                                         | CCE: 50 Marl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KS                         |                                                          |  |  |  |  |  |  |
| Prerequi                                                                 | site Courses: - Basic Biolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y, Anatomy and Physiolog                                                                   | gy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                          |  |  |  |  |  |  |
| Course O<br>Understar<br>Analyze o<br>age, gend<br>Evaluate<br>metabolis | <b>bjectives:</b><br>Id the principles of nutrition<br>lietary patterns and assess<br>er, activity level, and health<br>the impact of nutrition on<br>m, and dietary composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and their role in maintai<br>nutritional needs of indi<br>status.<br>weight management, ir | ining health and ining health and initial of the second seco | manag<br>n varic<br>such a | ing weight.<br>ous factors such as<br>as energy balance, |  |  |  |  |  |  |
| Course O                                                                 | utcomes: On completion o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f the course, students wil                                                                 | l be able to–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                          |  |  |  |  |  |  |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Outcomes                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Bloom's Level                                            |  |  |  |  |  |  |
| CO1                                                                      | Understand the fundament<br>for maintaining overall her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al principles of nutrition alth.                                                           | and their implic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations                     | 2. Understand                                            |  |  |  |  |  |  |
| CO2                                                                      | Comprehend the relations<br>and weight management st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hip between dietary inta<br>rategies.                                                      | ke, energy balan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ice,                       | 2. Understand                                            |  |  |  |  |  |  |
| CO3                                                                      | Interpret nutritional informed decisions about dietary ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mation from various soun                                                                   | rces to make info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ormed                      | 2. Understand                                            |  |  |  |  |  |  |
| CO4                                                                      | Demonstrate knowledge of dietary patterns within diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of factors influencing for<br>erent populations or culti                                   | ood behaviors a ural contexts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd                         | 2. Understand                                            |  |  |  |  |  |  |
| CO5                                                                      | Apply evidence-based nu<br>dietary plans for individu<br>objectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atrition principles to call als to achieve specific                                        | reate personaliz<br>health and weig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed<br>ght                  | 3. Apply                                                 |  |  |  |  |  |  |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COURSE CONTENT                                                                             | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                          |  |  |  |  |  |  |
| Unit I                                                                   | Unit IObesity epidemicCOs Mapped:<br>CO2, CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                          |  |  |  |  |  |  |
| Causes of internatio                                                     | obesity epidemic, eating handle handl | bits, lack of exercise, ma                                                                 | anaging obesity o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erisis, 1                  | nutrition transition,                                    |  |  |  |  |  |  |

| Unit II                                                          | Body Mass Index(07 hrs)COs Mapped:<br>CO1, CO3                                                                                                                                                                     |                                                                              |                                                                                             |  |  |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Meaning of weight statist                                        | body mass index (BMI), BMI chart, BMI for a ics, BMI, Waist Circumference and disease Risk.                                                                                                                        | age percentiles,                                                             | proportion of body fats,                                                                    |  |  |  |  |  |  |
| Unit III                                                         | Heath risk analysis                                                                                                                                                                                                | (07 hrs) COs Mapped:<br>CO2, CO4                                             |                                                                                             |  |  |  |  |  |  |
| Health risk                                                      | analysis due to high or low body fat, its effe                                                                                                                                                                     | ect on Heart dis                                                             | sease, Diabetes, cancer,                                                                    |  |  |  |  |  |  |
| Gallbladder                                                      | Disease, Breathing Problems, Reproductive Problems                                                                                                                                                                 | lems, Psychologi                                                             | cal and Social Impact of                                                                    |  |  |  |  |  |  |
| Being Over                                                       | weight, causes of underweight and its Health conse                                                                                                                                                                 | equences                                                                     |                                                                                             |  |  |  |  |  |  |
| Unit IV                                                          | Balancing energy and weight                                                                                                                                                                                        | (07 hrs)                                                                     | COs Mapped:<br>CO1, CO5                                                                     |  |  |  |  |  |  |
| Food Nutritic<br>six classes o<br>intakes, tools<br>moving, ener | on and body weight, Importance of nutrition for er<br>of nutrient: carbohydrates, lipid, proteins, wate<br>for choosing healthy diet, Amount of calories req<br>gy to process food, calculating energy need, biolo | hergy, structure,<br>er, vitamins, mi<br>uired, energy to<br>gy of body weig | body process regulations,<br>nerals, dietary reference<br>stay alive, energy to keep<br>ht. |  |  |  |  |  |  |
|                                                                  | Reference Books                                                                                                                                                                                                    |                                                                              |                                                                                             |  |  |  |  |  |  |
| 1. Lori A<br>2. G E I<br>Busin                                   | A. Smolin, Mary B. Grosvenor, Nutrition and weig<br>Mullin, L. J. Cheskin, L.E. Matarese, Integrative<br>ess, 2014.                                                                                                | ght management,<br>weight managen                                            | Chelsea House, 2010<br>nent, Springer Science &                                             |  |  |  |  |  |  |

|   | Strength of CO-PO Mapping |   |    |   |   |   |   |   |   |   |    |    |    |  |
|---|---------------------------|---|----|---|---|---|---|---|---|---|----|----|----|--|
| Γ |                           |   | РО |   |   |   |   |   |   |   |    |    |    |  |
|   |                           | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| Γ | CO1                       | 1 | 1  | 1 | 1 | 1 | - | - | - | - | -  | -  | -  |  |
| Γ | CO2                       | 1 | 1  | - | - | 1 | - | - | - | - | -  | -  | -  |  |
| Γ | CO3                       | - | -  | - | 1 | - | - | - | - | - | -  | -  | -  |  |
| Γ | CO4                       | 1 | -  | 1 | - | - | - | - | - | - | -  | -  | -  |  |
|   | CO5                       | 1 | 1  | 1 | - | 1 | - | - | - | - | -  | -  | -  |  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |          |  |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Sr. No. | o. Components for Continuous Comprehensive Evaluation               |          |  |  |  |  |  |  |  |  |  |
|         |                                                                     | Allotted |  |  |  |  |  |  |  |  |  |
| 1       | Tests on each unit using LMS                                        | 30       |  |  |  |  |  |  |  |  |  |
|         | (Each test for 20 M and total will be converted out of 30 M)        |          |  |  |  |  |  |  |  |  |  |
| 2       | Timely Assignments Submission on each unit (5 M for each unit)      | 20       |  |  |  |  |  |  |  |  |  |

|                                                                                                                                             | T. Y. B. Tech. Robotics and Automation<br>Pattern 2022 Semester: VI<br>ROB223020: Name of Subject: Research Methodology            |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
| Teaching                                                                                                                                    | g Scheme:                                                                                                                          | Credit Scheme:                                                                                                                               | Examination Schem                                                                               | ne:                                                     |  |  |  |  |  |  |  |
| Practical                                                                                                                                   | l :02 hrs/week                                                                                                                     | 01                                                                                                                                           | Term work: 50 Ma                                                                                | rks                                                     |  |  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                    |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
| Prerequisite Courses, if any: -                                                                                                             |                                                                                                                                    |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
| Course (<br>1. To or<br>data colle<br>2. To de                                                                                              | <b>Objectives:</b><br>ient students towards resea<br>ection, and critical analysis<br>evelop the students with the                 | rch-related activities and skills to design, execute,                                                                                        | developing skills in l<br>and evaluate research                                                 | iterature review,<br>studies.                           |  |  |  |  |  |  |  |
| Course (                                                                                                                                    | <b>Dutcomes:</b> On completion of                                                                                                  | of the course, students wil                                                                                                                  | ll be able to–                                                                                  |                                                         |  |  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                    | Course Outcomes                                                                                                                              |                                                                                                 | Bloom's Level                                           |  |  |  |  |  |  |  |
| CO1                                                                                                                                         | <b>Understand the form</b><br>effectively, considering fe                                                                          | ulation research pr<br>asibility, relevance, and s                                                                                           | oblem formulation ignificance.                                                                  | 2. Understand                                           |  |  |  |  |  |  |  |
| CO2                                                                                                                                         | Analyse research related and data.                                                                                                 | l information like existin                                                                                                                   | ng research, literature,                                                                        | 4. Analyse                                              |  |  |  |  |  |  |  |
| CO3                                                                                                                                         | <b>CO3</b> Prepare the research proposal report consisting of literature survey research gap identified and research significance. |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                    | COURSE CONTENTS                                                                                                                              | S                                                                                               |                                                         |  |  |  |  |  |  |  |
| 01 Literature review: Collect the existing literatures on any research idea in civil<br>engineering and identify the research gap.COs<br>CO |                                                                                                                                    |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
| 02 Report<br>earlier id<br>present th                                                                                                       | t and seminar presentation:<br>lentified research gap (rep<br>ne idea. (Introduction, Object                                       | Prepare the research pro<br>ort should be checked f<br>ctives, Scope of work, Me                                                             | posal based on the<br>or plagiarism) and<br>ethodology)                                         |                                                         |  |  |  |  |  |  |  |
| 03 Collection the nation any one of                                                                                                         | ction of standard format an<br>nal and international fundin<br>of the funding agencies (in a                                       | nd guidelines of research<br>g agencies and prepare re<br>a group of students of not                                                         | proposal: Identify<br>search proposal for<br>more than five).                                   |                                                         |  |  |  |  |  |  |  |
| 04 Prepa<br>different                                                                                                                       | re a report on different citat<br>publishers and prepare the l                                                                     | tion styles and referencin<br>list of references as per ar                                                                                   | g styles adopted by<br>1y standard style.                                                       |                                                         |  |  |  |  |  |  |  |
| 05 Write<br>the select                                                                                                                      | a report on case study of<br>ted topic for literature review                                                                       | any existing patent/copy<br>w.                                                                                                               | right/trademark on                                                                              |                                                         |  |  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                    | Guidelines for Conducti                                                                                                                      | on                                                                                              |                                                         |  |  |  |  |  |  |  |
| Subject f<br>students.<br>and decid<br>and impre                                                                                            | Eaculty will conduct the second Each group has to select or le the topic for literature re<br>ovement in existing systems          | essions on course content<br>the problem in the field of<br>view. Topics will be base<br>to in Robotics and Automa<br>lines for Termwork Ass | t. Faculty will form<br>Robotics and Automated<br>on study, identificated<br>ation Engineering. | small groups of<br>tion Engineering<br>tion of problems |  |  |  |  |  |  |  |
| A continu                                                                                                                                   | A continuous assessment will be done by Subject Faculty/Mentor/Guide. Assessment will be based                                     |                                                                                                                                              |                                                                                                 |                                                         |  |  |  |  |  |  |  |
| on the As                                                                                                                                   | ssignments mentioned in the                                                                                                        | e course content.                                                                                                                            |                                                                                                 |                                                         |  |  |  |  |  |  |  |
|                                                                                                                                             |                                                                                                                                    | <b>Reference Books</b>                                                                                                                       |                                                                                                 |                                                         |  |  |  |  |  |  |  |
| Research I<br>New Delh                                                                                                                      | Methodology Methods & 7<br>i.                                                                                                      | Techniques, C. K. Kotha                                                                                                                      | ri, 2nd edition, New A                                                                          | Age International,                                      |  |  |  |  |  |  |  |

| Strength of CO-PO Mapping |                            |    |   |   |   |   |   |   |   |   |   |   |    |    |
|---------------------------|----------------------------|----|---|---|---|---|---|---|---|---|---|---|----|----|
|                           |                            | PO |   |   |   |   |   |   |   |   |   |   | PS | 50 |
|                           | 1 2 3 4 5 6 7 8 9 10 11 12 |    |   |   |   |   | 1 | 2 |   |   |   |   |    |    |
| CO1                       | 3                          | 3  | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3  | 2  |
| CO2                       | 3                          | 3  | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3  | 2  |
| CO3                       | 3                          | 3  | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3  | 2  |
| Average                   | 3                          | 3  | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3  | 2  |