K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous wef AY 2022-23)

Structure and Syllabus of T.Y. B. Tech (Chemical Engineering)

Pattern: 2022

(wef AY 2022-23)

(Autonomous from Academic Year 2022-23)

T.Y. B. Tech Chemical Engineering

(wef AY 2024-25)

SEM-V

Course	Course	e Title of Course		Teaching Scheme			Evaluation Scheme and Marks				Credits				
Code	Type	Title of Course	ТН	TU	PR	INSEM	END SEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU	PR	TOTA L
CHE223001	DCC	Mass Transfer I	3	-	ı	20	60	20			100	3	-	-	3
CHE223002	DCC	Chemical Reaction Engineering I	3	-	ı	20	60	20			100	3	-	-	3
CHE223003	DCC	Process Equipment Design	3	-	ı	20	60	20			100	3	-	-	3
CHE223004	DCC	Lab Work in Mass Transfer I	-	-	2	-	-	-	25	25	50	ı	-	1	1
CHE223005	DCC	Lab Work in Chemical Reaction Engineering I	-	_	2				25	25	50	1	-	1	1
CHE223006	DEC	Elective I	3	-	ı	20	60	20			100	3	-	-	3
CHE223007	DEC	Lab Work in Elective I	-	-	2	-	-	-	25	25	50	-	-	1	1
CHE223008	OEC	IPR and Patents	2	-	1	-	-	50	-	-	50	2	-		2
CHE223009	ESC	Piping Design and Engineering	3	-	ı	20	60	20	-	ı	100	3	-	-	3
CHE223010	PSI	Seminar	-	1	2	_	-	-	TUT-25 TW-25	1	050	1	1	1	2
Total hours	/marks/	credits	17	01	08	100	300	150	125	75	750	17	1	4	22

Elective I		Lab Work in Elective I			
CHE223006A	Chemical Process Industries	CHE223007A	Chemical Process Industries		
CHE223006B	Artificial Intelligence	CHE223007B	Artificial Intelligence		

Total hours/marks/credits

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

		T.Y. B.Te	ech (Chem	ical	Engin	eering								
		(wef	AY	2024	-25)									
				SEM	-VI										
Course Course This a G				Teaching Scheme Evaluation Scheme			e and	and Marks			Credits				
Code	Type	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW		TOTAL	ТН	TU	PR	TOTAL
CHE223011	DCC	Mass Transfer II	3	-	-	20	60	20			100	3	-	-	3
CHE223012	DCC	Chemical Reaction Engineering II	3	-	-	20	60	20			100	3	-	-	3
CHE223013	DCC	Lab Work in Mass Transfer II	-	-	2	-	-	-	25	25	50	-	-	1	1
CHE223014	DEC	Elective II	3	-	-	20	60	20			100	3	-	-	3
CHE223015	DEC	Elective III	3	-	-	20	60	20	-	-	100	3	-	-	3
CHE223016	DEC	Lab Work in Elective II	-	-	2	-	-	-	25	25	50	-	-	1	1
CHE223017	ESC	Process Instrumentation	3	-	-	20	60	20			100	3	-	-	3
CHE223018	OEC	Optimization Techniques	2	-	-	-	-	50	-	-	50	2	-	-	2
CHE223019	ASM	Computer Aided Chemical Engineering	-	1	2				25	25	50	-	1	1	2
CHE223020	PSI	Project Phase I	-	-	2	-	-	-	50	-	50	-	-	1	1

Elective II		Lab Work in El	ective II	Elective III	
CHE223014A	Renewable Energy	CHE223016A	Renewable Energy	CHE223015A	Heat Transfer Operations
CHE223014B	Chemical Process Synthesis	CHE223016B	Chemical Process Synthesis	CHE223015B	Food Technology

01

08

100

300

150 | 125 | 75

17 1 4

750

17

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering CHE223001: Mass Transfer I						
Teaching Scheme:	Credit Scheme:3	Examination scheme:				
Theory: 3 hrs/week		In Semester Exam: 20 marks				
-		End Semesters Exam: 60 marks				
		Continuous Comprehensive Evaluation: 20 marks				
		Total: 100 Marks				

Prerequisite: Fundamental Knowledge of Process Calculations, Thermodynamics and Unit operations in Chemical Engineering

Course Objectives:

- 1. To acquire basic understanding of the general principles and theories of Mass Transfer operations used in Chemical industries.
- 2. To apply the knowledge in the design of Mass transfer operations for the separation.
- 3. To be able to operate the various mass transfer operations such as Gas absorption, Humidification, Dehumidification and Drying in Chemical process industries.

Course Outcomes: On completion of the course, learner will be able to:-

Sr.	Course Outcomes	Bloom's
No.		Level
CO1	To apply the general principles of Mass Transfer and theories of mass transfer operations in chemical process industries.	3-Apply
CO2	Select and design of the gas-liquid contact Mass Transfer equipments and acquire the understanding of their principles.	6-Create
CO3	Separate the gas mixtures based on solubility of gas solute in selective solvent using gas absorption.	3-Apply
CO4	Apply the principles of humidification – dehumidification operations and design of cooling towers	3-Apply
CO5	Illustrate the principles and mechanism of drying and design the various dryers based on the applications.	6-Create

Course Contents:

Unit 1 Introduction (L07)

COs Mapped: CO1

General principles of Mass Transfer, classification of Mass Transfer Operations, choice of separation method, methods of conducting mass transfer operations, design principles. Diffusion Mass Transfer, Molecular Diffusion in gases and liquids, diffusivities of gases and liquids, types of diffusion, Fick's and Maxwell law of diffusion, diffusion in solids, unsteady state mass transfer. Mass transfer coefficients in laminar flow and turbulent flow, theories of mass transfer, mass, heat and momentum transfer analogies. Inter-phase mass transfer, equilibrium in mass transfer, the two resistance theory, continuous co-current, countercurrent and crosscurrent processes, cascades.

Unit 2 | Gas Absorption (L08)

COs Mapped: CO2

Mechanism of gas absorption, equilibrium in gas absorption, application of mass transfer theories to absorption, absorption in wetted wall columns, values of transfer coefficient, absorption in packed tower and spray tower, calculation of HETP, HTU, NTU, calculations of height of packed and spray tower. Absorption in tray towers, absorption and stripping factors, tray efficiencies, calculation of number of trays for absorption, absorption with chemical reaction.

Unit 3 Humidification and Dehumidification (L07) COs Mapped: CO3

Principles, Vapour-liquid equilibria, enthalpy of pure substances, basic definition of all humidification terms, wet bulb temperature relation, psychrometric chart, Lewis relation, methods of humidification and dehumidification, equipment like cooling towers, tray towers, spray chambers, spray ponds, cooling tower design – HTU, NTU concept, calculation of height of cooling tower.

(Autonomous from Academic Year 2022-23)

Unit 4 Equipment for gas liquid operation (L07) COs Mapped: CO4

Types of columns, Types of trays, types of packing, Gas dispersal equipment – bubble columns, mechanically agitated vessels, tray towers. Liquid dispersal equipment – Venturi scrubbers, wetted wall columns, spray towers, packed columns

Unit 5 Drying (L07) COs Mapped: CO5

Principles, equilibrium in drying, type of moisture binding, mechanism of batch drying, continuous drying, time required for drying, mechanism of moisture movement in solid, design principles of tray dryer, rotary dryer, drum dryer, spray dryer, fluidized bed and spouted bed dryer, pneumatic dryer and vacuum dryer.

- 1. Mass Transfer Operations, Treybal R.E., McGraw Hill, 3rd Edition.
- 2. Chemical Engineering, Vol I & II, Coulson J.M. and |Richardson J.F., McGraw Hill, 6th Edition.
- 3. Principles of Unit Operations, Wiley Student Edition, 2nd Edition.
- 4. Separation Processes, C. Judson King, 2nd Edition.
- 5. Design of Equilibrium Stage Processes, Buford D.Smith, McGraw Hill.
- 6. Unit Operations of Chemical Engineering, W. L. McCabe, J. C. Smith and Peter Harriott, McGraw Hill, 7th Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10			
2	Group Presentation on Unit-5	05			
3	LMS Test on Each Unit	05			
	Total	20			

(Autonomous from Academic Year 2022-23)

	Seme	ester V (TY - B. Te	ech.) Chemical Engi	 neering	
		·	al Reaction Enginee	· ·	
Teachi	ng Scheme:	Credit Scheme:3	Examination scheme:		
Theory	: 3 hrs/week		In Semester Exam: 20 marks		
			End Semesters Exam: 60 marks		
			Continuous Comprehensive Evaluation: 20 mar		
			Total: 100 Marks		
Prerequ yield.	isite: Concep	ot of order of reaction,	Molecularity, rate of r	eaction, conversion and	
	Objectives:				
1. Т	To understand	concepts of rate equation	ion and types of reaction	S	
2. T	To determine l	kinetics and design read	ctor		
		nperature effects and de			
	Outcomes: O	*	urse, learner will be able		
Sr. No.		Course Outcom		Bloom's Level	
CO1	Understand reaction.	rate equation and its r	representation for given	2- Understand	
CO2	Analyze kii	netic data based on met	thods of analysis.	4-Analyze	
CO3	Apply perfe given react	-	determined kinetics for	3-Apply	
CO4	Understand product dis		actions and determine	2- Understand	
CO5	Analyze dev	iations from ideality and	plot different curves	4-Analyze	
			e Contents:	T	
		to chemical kinetics		COs Mapped: CO1	
				reactions, elementary and	
	•			controlling step, relation	
	ncy of rate co		ept of fractional change	e in volume, temperature	
Unit 2		netics modelling of ba	atah ragatar (I 08)	COs Mapped: CO2	
				differential methods for	
		=		a, zero order, first order,	
_			•	ns, reversible reactions,	
	lytic reactions		variable volume system	ins, reversions reactions,	
	Reactor desi			COs Mapped: CO3	
		~	erformance equation of	batch reactor, continuous	
_	_		_	and parallel, concept of	
Damkoh	ler number in	reactor design			
Unit 4	Multiple rea	ctions (L07)		COs Mapped: CO4	
Types of	f multiple rea	ctions, qualitative and	quantitative discussion	for multiple reactions in	
terms of	product distri	bution for different rea	actors, instantaneous and	overall fractional yield	
Unit 5	Temperatur (L07)	e effects and deviatio	ons from ideal reactor	COs Mapped: CO5	
_	-	•		istribution (RTD), F,C,E,	
			or non-ideal reactions, d	ispersion model, tanks in	
series mo	odel, segregat	ed flow model			

(Autonomous from Academic Year 2022-23)

- 1. Chemical Reaction Engineering, Octave Levenspiel, Wiley, 3rd Edition.
- 2. Chemical Engineering Kinetics, J. M.Smith, McGraw-Hill Education, 3rd Edition.
- 3. Elements of Chemical Reaction Engineering, H. Scott, Fogler. Prentice Hall India Learning Private Limited, 4th Edition.

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10		
2	Group Presentation on Unit-5	05		
3	LMS Test on Each Unit	05		
	Total	20		

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering							
CHE223003: Process Equipment Design							
Teaching Scheme:	Credit Scheme:3	Examination scheme:					
Theory: 3 hrs/week		In Semester Exam: 20 marks					
		End Semesters Exam: 60 marks					
		Continuous Comprehensive Evaluation: 20 marks					
		Total: 100 Marks					

Prerequisites: Basic concepts of Design and unit operations in Chemical Engineering.

Course Objectives:

- 1. To acquire basic understanding of design parameters in process and Mechanical Design of equipment's in Chemical Engineering.
- 2. To design mechanical aspects of various process vessels and their supports used in chemical Engineering.
- 3. To select and design various heat exchanging equipments.

Course Outcomes: On completion of the course, learner will be able to:-

Course.	outcomes. On completion of the course, rearner will be used to:	
Sr. No.	Course Outcomes	Bloom's Level
CO1	Acquire basic understanding of design parameters in process and Mechanical Design of distillation column.	2-understand
CO2	Classify and design of various process vessels and its components.	4-Analyze
CO3	Design of storage and tall vertical vessels and their supports	4-Analyze
CO4	Select and design the agitator for specific mixing application and reaction vessels with heat exchange provision.	6-Create
CO5	Apply knowledge to design different types of heat exchangers in chemical industry.	3-Apply
1	~ ~ .	

Course Contents:

Unit 1 Design of distillation column (L07)

COs Mapped: CO1

Design variables in distillation, Choices of plates or packing, design methods for binary systems, plate efficiency, approximate column sizing, plate contactors, and plate hydraulic design. Packed column design procedure, packed bed height (distillation and absorption), HTU, Cornell's method, Onda's method, column diameter, column internals, wetting rates, column auxiliaries.

Unit 2 Design of Pressure Vessels (L08)

COs Mapped: CO2

Introduction, types of pressure vessels, proportioning of pressure vessels, selection of L/D ratio, optimum proportions, codes and standards for pressure vessels (IS: 2825), design stress, design criteria, design of shell (spherical and cylindrical), design of different types of heads and closures, design of flanges and nozzles, compensation for openings and branches. Design of pressure vessels subjected to external pressure.

Design of High Pressure Vessel; Materials of construction, stresses in thick cylinder, pre stressing of thick walled vessels, analysis and design of high pressure vessels including shell and head with stress distribution.

Unit 3 Designs of Storage Vessels and Tall Vertical Vessels (L07) COs Mapped: CO3

Study of various types of storage vessels, vessels for storing volatile and non-volatile liquids, storage of gases, Horton sphere, Losses in storage vessels, Various types of roofs for storage vessels, Design of cylindrical storage vessels as per API-650 and IS: 803 codes and specification; design of base plates, shell plates, roof plates, wind girders, curb angles for self supporting and column supported roofs.

(Autonomous from Academic Year 2022-23)

Design of Tall Vessels: Stresses in the shell, shell design, vessel supports- introduction and classification of supports, design of skirt supports design of base plate, skirt bearing plate, anchor bolts, bolting chairs and skirt shell plates Design of saddle supports, ring stiffeners.

Unit 4 Design of Agitators and Reaction vessels (L07)

COs Mapped: CO4

Agitators, their selection, applications, baffling, agitator shaft diameter calculations which includes twisting moment, equivalent bending moment, power requirement calculations for agitation systems, Power Curve, Reaction vessels: Heat Transfer aspects in the design of vessels, study and design of various types of jackets like plain, half coil, channel, limpet oil, study and design of internal coil reaction vessels, heat transfer coefficients in coils.

Unit 5 Design of Heat Exchange Equipments (L07)

COs Mapped: CO5

Shell and tube heat exchanger- General design considerations; Thermal design and Mechanical design of shell and tube heat exchangers, Codes and standards for design; BS, IS: 4503 and TEMA, Design of double pipe heat exchanger. Plate heat exchanger: design procedure, **Evaporators:** classification, criteria for selection, design of Calendria type evaporator, Concept of Falling Film Evaporator, **Condensers:** heat transfer fundamentals, condensation outside horizontal tubes, condensation inside and outside vertical tubes, condensation inside horizontal tubes, and condensation of mixtures. Reboilers: types, selection, boiling heat transfer fundamentals, estimation of boiling heat transfer coefficients.

- 1. Process Equipment Design, V. V. Mahajani and S. B. Umarji, Laxmi Publications, 5th Edition.
- 2. Process Equipment Design, Brownell Young, Wiley.
- 3. Chemical Engineering Vol.6, J.M. Coulson, J.F. Richardson and R.K. Sinott, Butterworth-Heinemann Ltd, 2nd Edition.
- 4. Introduction to Chemical Equipment Design: Mechanical Aspects, B.C. Bhattacharya, C.B.S. Publications..
- 5. Code for unfired pressure vessels, Bureau of Indian standards, IS 2825 (1969).
- 6. Chemical Process Equipment-Selection and Design, James R. Couper, W. Roy Penney, James R. Fair, Butterworth-Heinemann, 3rd Edition.
- 7. Ludwig's Applied Process Design for Chemical and Petrochemical Plants: 1, A. Kayode, Coker, Gulf Professional Publishing, 4th Edition.

Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Three assignments on unit-1, unit-2, unit-3 & 4	10
2	Group presentation on Unit-5	05
3	LMS Test on each Unit	05

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering			
CHE223004: Lab work in Mass Transfer I			
Teaching Scheme:	Credit Scheme:1	Examination scheme:	
Practical: 2 Hrs. /Week		TW: 25 marks	
		Practical: 25 marks	
		Total: 50 Marks	

Prerequisite: Fundamental Knowledge of Process Calculations, Thermodynamics and Unit operations in Chemical Engineering

Course Objectives:

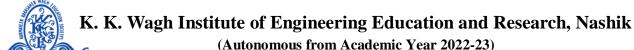
- 1. To acquire basic understanding of the general principles and theories of Mass Transfer operations used in Chemical industries.
- 2. To apply the knowledge in the design of Mass transfer operations for the separation.

2. To apply the knowledge in the design of Mass transfer operations for the separation.				
3. To be able to operate the various mass transfer operations such as Gas absorption,				
Humidification, Dehumidification and Drying in Chemical process industries.				
Course (Outcomes: On completion of the course, learner will be able to:-			
Sr. No.	Course Outcomes	Bloom's Level		
CO1	To apply the general principles of Mass Transfer and theories of	3-Apply		
COI	mass transfer operations in chemical process industries.			
CO2	Select and design of the gas-liquid contact Mass Transfer	6-Create		
CO2	equipments and acquire the understanding of their principles.			
CO3	Separate the gas mixtures based on solubility of gas solute in	3-Apply		
CO3	selective solvent using gas absorption.			
CO4	Apply the principles of humidification – dehumidification operations	3- Apply		
CO4	and design of cooling towers			
CO5	Illustrate the principles and mechanism of drying and design the	6-Create		
COS	various dryers based on the applications.			
	Suggested List of Laboratory Assignments:			
Any eig	tht practical's to be performed out of the following:			
Sr. No	Laboratory Experiments	COs Mapped		
1.	Tray Dryer – To calculate the rate of Batch Drying	CO1, CO5		
2.	Rotary Dryer – To study the Characteristics of Rotary Dryer	CO1, CO5		
3.	Spray Dryer – To study the design and Operating Principles of	CO1, CO5		
	Spray Dryer			
4.	Fluidized Bed Dryer –To study the characteristics of Fluidized bed	CO1, CO5		
	Dryer			
5.	Liquid Diffusion – To calculate the Diffusion Coefficient for a	CO1, CO5		
	liquid –liquid system			
6.	Winkelmann's method – To find the diffusion Coefficient of vapour	CO1, CO2		
	in air by experimental method			
7.	Enhancement Factor – To find the enhancement factor for	CO1, CO2, CO3		
	absorption with and without chemical reaction			
8.	Mass transfer Coefficient – To determine the Mass Transfer	CO1, CO2, CO3		
	Coefficient for Absorption in a Packed Tower			
9.	Cooling Tower– To study the characteristics	CO1, CO2, CO4		
10.	Humidifier and Dehumidifier – To study the Characteristics	CO1, CO2, CO4		
11.	Interphase Mass Transfer Coefficient – To calculate the individual	CO1, CO2		
	and overall Mass Transfer Coefficient			
12.	Wetted Wall Column – To find the mass transfer coefficient in a	CO1, CO2, CO3		

(Autonomous from Academic Year 2022-23)

wetted wall Column

Guidelines for Laboratory Conduction


- Teacher will brief the given experiment to students with its procedure, observations, calculation, and outcome of the experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

Semester V (TY - B. Tech.) Chemical Engineering			
CHE223005: Lab work in Chemical Reaction Engineering I			
Scheme:	Credit Scheme: 1	Examination scheme:	

Teaching Scheme:

Practical: 2Hrs / week

Credit Scheme:1

Examination scheme:

TW: 25 marks

Practical: 25 marks

Total: 50 Marks

Prerequisite: Concept of order of reaction, molecularity, rate of reaction, conversion and yield as covered in the subject of process calculations and chemistry.

Course Objectives:

- 1. To understand concepts of rate equation and types of reactions
- 2. To determine kinetics and design reactor
- 3. To determine parameter dependency and deviations occurring in reactors

Course Outcomes: On completion of the course, learner will be able to—

Sr. No.	Course Outcomes	Bloom's Level	
CO1	Understand rate equation and its representation for given reaction.	2- Understand	
CO2	Analyze kinetic data based on methods of analysis.	4-Analyze	
CO3	Apply performance equations to evaluate kinetic parameters for given reaction.	5-Evaluate	
CO4	Analyze deviations from ideality and plot different curves	4-Analyse	

Suggested List of Laboratory Assignments:

Any **eight** practical's to be performed out of the following:

Sr.	Laboratory Experiments	COs Mapped
No.		
1.	Study of saponification of ethyl acetate reaction in batch reactor.	CO1, CO2,
		CO3
2.	Determination of Arrhenius parameters.	CO2, CO3
3.	Study of pseudo first order reaction: Acid catalyzed hydrolysis of	CO1, CO2,
	methyl acetate	CO3
4.	Study of saponification of ethyl acetate reaction in mixed flow	CO2, CO3
	reactor.	
5.	Study of saponification of ethyl acetate reaction in plug flow reactor	CO2, CO3
6.	CSTRs in series.	CO2, CO3
7.	CSTR followed by PFR.	CO2, CO3
8.	RTD studies in PFR.	CO4
9.	RTD studies in MFR.	CO4
10.	RTD studies in Helical coil reactor.	CO4

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students with its procedure, observations, calculation, and outcome of the experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

(Autonomous from Academic Year 2022-23)

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

I MANUAL I

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

End Semeste	ss Industries n scheme: Exam: 20 marks ers Exam: 60 marks Comprehensive Evaluation: 20 marks		
Teaching Scheme: Theory: 3 hrs/week Credit Scheme:3 In Semester I End Semeste Continuous C	n scheme: Exam: 20 marks ers Exam: 60 marks Comprehensive Evaluation: 20 marks		
Theory: 3 hrs/week In Semester I End Semeste Continuous C	Exam: 20 marks ers Exam: 60 marks Comprehensive Evaluation: 20 marks		
End Semeste Continuous C	ers Exam: 60 marks Comprehensive Evaluation: 20 marks		
Continuous C	Comprehensive Evaluation: 20 marks		
	-		
Total: 100 M			
Prerequisites: Basic Knowledge of Chemical compound, I unit operations	Introduction of unit processes and		
Course Objectives:			
1. To study introduction of chemical engineering and study	udy of glass coal and chlor-alkali		
industries	ady of glass, cour and emor anam		
2. To study natural chemical industry.			
3. To study nitro-phosphorus, sulfur industry.			
4. To study petroleum and polymer industry.			
5. To study petrochemical industry.			
Course Outcomes: On completion of the course, students	s will be able to—		
CO Course Outcomes	Bloom's Level		
Understand the basic concept and explain about			
and chlor-alkali industry.	at glass, coal 2 officerstand		
CO2 Understand and describe about natural chemical in	ndustry. 2- Understand		
Understand and explain about nitro-phosph			
industry	iorus, sunui 2- Onderstand		
CO4 Understand and describe about petroleum a industry.	and polymer 2- Understand		
CO5 Understand and describe about petrochemical indu	ustry 2- Understand		
Course Contents:			
Unit 1 Basic Concepts (L07)	COs Mapped :CO1		
Introduction: Chemical industries-facts and figures, MSD			
concepts, Chemical processing and role of chemical engi			
anatomy of a chemical manufacturing process, major engine			
Glass Industries: Method of manufacture, manufacture of	- -		
Coal Chemicals: Destructive distillation of coal, Type	es of carbonization, Coke oven—		
construction, working and applications	0.011		
Chlor-Alkali Industry: Production of Soda ash, Production			
Unit 2 Natural Chemical Industry (L07)	COs Mapped :CO2		
i. Sugar and starch industry			
ii. Oil, Fat and waxes			
iii. Pulp and Paper industry			
iv. Food and food- by product processing	20 37		
Unit 3 Nitrogen, Phosphorus and sulfur Industry (I			
i. Nitrogen Industry: Production of Ammonia, Nitric acid, Urea, Ammonium Nitrate.			
ii. Phosphorous Industry: Production of Phosphoric acid, single and triple Super			
Phosphate, Ammonium Phosphate			
iii. Sulphur Industry: Production of Sulphur, Sulphuric			
Unit 4 Petroleum and Polymer Industry (L07)	COs Mapped :CO4		
i. Petroleum Industry: History of production of cr	rude petroleum, characteristics of		

(Autonomous from Academic Year 2022-23)

refineries-refinery operations,

ii. Introduction to Polymer, Classification of Polymerization, Production:polyolefins: polyethylene, poly propylene and polystyrene, styrene copolymers, polyvinyl chloride, polycarbonate, nylon 6, nylon 66, urea formaldehyde, styrene butadiene rubber (SBR) etc

Unit 5 Petrochemical Industry (L08)

COs Mapped: CO5

- i. C1 Compounds: Production of Methanol, Formaldehyde, and Halogenated Hydrocarbons etc.
- ii. C2 Compounds: Production of Ethylene and Acetylene- Steam Cracking of Hydrocarbons, Ethylene Dichloride, Vinyl Chloride etc.
- iii. C3 Compounds: Production of Propylene by Indirect Hydration, Acetone, Cumene etc.
- iv. Aromatic Compounds: Production of Phenol, Phthalic Anhydride and Styrene etc.

- 1. Dryden's Outlines of Chemical Technology, M Gopal Rao, Marshal Sittig, East-west press 3rd Edition.
- 2. Shreve's Chemical Process Industries, George T Austin, Tata McGRAW Hill, 5th Edition.
- 3. Unit Processes in Organic Synthesis, P. H. Groggins., Tata McGRAW-Hill, 5th Edition.
- 4. Chemical Process Technology Jacob A. Moulijn, Michiel Makkee, Annelies E. van Diepe, Wiley
- 5. Industrial Chemicals, Feith Keys and Clerk
- 6. Chemical Technology- Venkateshwaralu, Vol. I, II, III, IV Chemical Engg. IIT Madras

Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Three assignments on unit-1, unit-2, unit-3 & 4	10
2	Group presentation on unit-5	05
3	LMS Test on each unit	05
	Total	20

(Autonomous from Academic Year 2022-23)

Semester V (TY B. Tech.) Chemical Engineering			
CHE223006B: Artificial Intelligence			
Teaching Scheme:	Credit Scheme:3	Examination scheme:	
Theory: 3 hrs/week		In Semester Exam: 20 marks	
		End Semesters Exam: 60 marks	
		Continuous Comprehensive Evaluation: 20 marks	
		Total: 100 Marks	

Prerequisite: - Engineering Mathematics, Fundamentals of Chemical Engineering

Course Objectives:

- 1. Introduce the fundamental concepts and applications of Artificial Intelligence (AI) in the context of Chemical Engineering.
- 2. Equip students with the necessary knowledge and skills to utilize AI techniques for problem-solving, analysis, and design in the chemical engineering domain.
- 3. Develop critical thinking and problem-solving skills through hands-on experience with AI tools and techniques.

in took and teemingues.			
Course Outcomes: On completion of the course, learner will be able to:-			
Sr. No	Course Outcomes	Bloom's	
		Level	
CO1	Define key AI concepts like knowledge representation, search	2-Understand	
COI	algorithms, and machine learning techniques.		
CO2	Explain the strengths and limitations of different AI approaches	2-Understand	
CO2	in various chemical engineering applications.		
CO3	Implement basic AI models using Python programming to solve	3-Apply	
COS	problems related to chemical engineering analysis and design.		
	Evaluate the effectiveness of applied AI solutions for specific	5-Evaluate	
CO4	chemical engineering tasks, considering factors like accuracy,		
	efficiency, and interpretability.		
	Design and implement a simple AI solution using appropriate	5-Evaluate	
CO5	techniques to address a specific challenge in the chemical		
	engineering domain.		
C			

Course Contents:

Unit 1 | **Introduction to AI** (**L07**)

COs Mapped:CO1

Introduction to AI and its historical perspective; Implications of AI for solving engineering problems, specifically in chemical engineering analysis and design; Case studies showcasing the use of AI in the chemical engineering industry.

Unit 2 | Symbolic AI (L07)

COs Mapped: CO2

Knowledge representation: Propositional and predicate calculus, Production rules, Frames, objects, and ontologies; Search: Game trees and search algorithms (depth-first, breadth-first, best-first), Forward and backward chaining techniques.

Unit 3 | Python Programming Fundamentals (L07)

COs Mapped: CO2

Introduction to Python programming language; Learning basic programming syntax, data structures, and control flow statements; Utilizing online resources like Coursera for further learning.

Unit 4 | Knowledge-Based Systems and Machine (L07)

COs Mapped: CO4

Knowledge-Based Expert Systems: Introduction and its applications in chemical engineering, Case studies focusing on: Process fault diagnosis and control, Operating procedures synthesis and process safety, Process design, Product design; Machine Learning

(Autonomous from Academic Year 2022-23)

Techniques: Data visualization and clustering techniques (k-means, k-medoids, density-based clustering, hierarchical clustering), Classification techniques (PCA/PLS, decision trees, kNN, LDA, SVM, kernel methods, RBN, neural networks, autoencoders), Regression techniques (linear regression, regularization, nonlinear regression).

Unit 5 | Advanced AI Techniques (L08)

COs Mapped: CO5

Genetic algorithms and directed evolution for materials design; Ensemble learning methods: boosting and random forests; Modeling with deep neural networks (DNNs) and recurrent neural networks (RNNs); Reinforcement learning and graphical models; Introduction to hybrid AI models - combining symbolic and numeric AI techniques; Domain-specific ontologies, languages, and compilers.

- 1. Artificial intelligence in chemical engineering, Thomas E. Quantrille, Academic Press, 1st Edition.
- 2. Artificial Intelligence: A new Synthesis, Nilsson Nils J., Morgan Kaufmann Publishers Inc.
- 3. Artificial Intelligence, Patrick Henry Winston, Addison-Wesley Publishing Company.
- 4. Computational Intelligence: An Introduction, Andries P. Engelbrecht, Wiley India, 2nd Edition.
- 5. Artificial Intelligence- A Modern Approach, Russell S, Norvig P, Pearson Education , 4th Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three assignments on unit-1, unit-2, unit-3 & 4	10	
2	Group presentation on unit-5	05	
3	LMS Test on Each unit	05	
	Total	20	

(Autonomous from Academic Year 2022-23)

Semester V (TY B. Tech.) Chemical Engineering CHE223007A: Lab work in Chemical Process Industries

Teaching Scheme:

Practical: 2Hrs. /Week

Credit Scheme:1

Examination scheme:

TW: 25 marks

Oral: 25 marks

Total: 50 Marks

Prerequisites: Basic Knowledge of Chemical compound, Introduction of unit processes and unit operations

Course Objectives:

- 1. To Study introduction of chemical engineering and study of glass, coal and chlor-alkali industries
- 2. To study Natural chemical industry.
- 3. To study nitro-phosphorus, sulfur industry.
- 4. To study Petroleum and Polymer Industry.
- 5. To study Petrochemical Industry.

Course Outcomes: On completion of the course, learner will be able to:-

Sr.	Course Outcomes	Bloom's
No.		Level
CO	Apply process calculation approaches to synthesize lab-scale products	3-Apply
1		
CO	Gain proficiency in drawing process flow sheets using CAD software and	2-
2	simulating processes using simulation software.	Understand
CO	Demonstrate competency in applying mass and energy balance principles	3-
3		Demonstrate

Suggested List of Laboratory Assignments:

Any eight practical's to be performed out of the following:

Sr.	Laboratory Experiments	CO		
No.		Mapped		
1.	Lab scale product synthesis.	CO1		
2.	Mass balance calculations of any two processes using process calculation approach.	CO3		
3.	Heat balance calculations of any two processes using process calculation approach.	CO3		
4.	Calculations based on recycle operations.	CO3		
5.	Process flow sheets drawing of any two processes using CAD.	CO2		
6.	Simple mass & energy balance using process simulators	CO2		
7.	Process flow sheets drawing of any two processes using Simulation Software	CO2		
8.	Mass Balance using Simulation approach	CO3		
9.	Energy Balance using simulation approach	CO3		
	Cuidolines for I abaratary Conduction			

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students with its procedure, observations, calculation, and outcome of the experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.

(Autonomous from Academic Year 2022-23)

- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

(Autonomous from Academic Year 2022-23)

Semester V (TY B. Tech.) Chemical Engineering			
CHE223007B: Lab work in Artificial Intelligence			
Teaching Scheme:	Credit Scheme:1	Examination scheme:	
Practical: 2Hrs. /Week		TW: 25 marks	
		Oral: 25 marks	
		Total: 50 Marks	

Prerequisite: - Engineering Mathematics, Fundamentals of Chemical Engineering

Course Objectives:

- 1. Introduce the fundamental concepts and applications of Artificial Intelligence (AI) in the context of Chemical Engineering.
- 2. Equip students with the necessary knowledge and skills to utilize AI techniques for problem-solving, analysis, and design in the chemical engineering domain.
- 3. Develop critical thinking and problem-solving skills through hands-on experience with AI tools and techniques.

Course Outcomes: On completion of the course, learner will be able to:-

Sr.	Course Outcomes	Bloom's	
No.		Level	
CO1	Define key AI concepts like knowledge representation, search algorithms, and machine learning techniques.	2-Understand	
		2 Undonstand	
CO2	Explain the strengths and limitations of different AI approaches in variouschemical engineering applications.		
CO3	Implement basic AI models using Python programming to solve problems related to chemical engineering analysis and design.	3-Apply	
CO4	Evaluate the effectiveness of applied AI solutions for specific chemical engineering tasks, considering factors like accuracy, efficiency, and interpretability.	5-Evaluate	
CO5	Design and implement a simple AI solution using appropriate techniques to addressa specific challenge in the chemical engineering domain.	5-Evaluate	
	Suggested List of Laboratory Assignments		

Suggested List of Laboratory Assignments:

Any eight practical's to be performed out of the following:

Sr. No	List of Laboratory Assignments	CO Mapped
1.	Explore & present ChE applications of AI, with benefits & challenges.	CO1
2.	Build a collaborative history of AI with online tools.	CO2
3.	Solve a chemical engineering problems with logic.	CO3
4.	Build molecules by following production rules.	CO3
5.	Basic codes for chemical engineering calculations.	CO3
6.	Use of Python to find patterns in chemical data.	CO3
7.	Use AI to analyze data and predict chemical reactions.	CO3
8.	Use AI simulation to optimize chemical processes.	CO4
9.	Explore how AI safeguards chemical processes.	CO4
10.	Solve a chemical engineering problem using a combo of AI techniques.	CO5
Cuidelines for Laboratory Conduction		

Guidelines for Laboratory Conduction

- 1. Teacher will brief the given problem statement to students, its objectives and outcome.
- 2. Students will solve the allotted problem either using standard literature survey or python

(Autonomous from Academic Year 2022-23)

software if required.

- 3. After solving problem, students will check their results from the teacher.
- 4. Students will then complete the write up.

Guidelines for Student's Lab Journal

Write-up should include title, software used, concept utilized, course usage and problem statement, conclusion, programming steps and programming results if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

(Autonomous from Academic Year 2022-23)

	Semester V (TY - B. Tech.) Chemical Engineering CHE223008: IPR and Patents				
	ry: 2 hrs/week Credit Scheme: Credit Scheme: Continuous Comprehensive Evaluation: 50 Marks				
Prerequ	isite Courses: NA				
1. F	Objectives: Provide basics of various Provide insight into the re	-	± •	os of intall	ootuel
3. E	roperty Enable students to draft p	atent specifications on	their own		
Course	Outcomes: After success	sful completion of the	course student	should be	able to:-
	Co	urse Outcomes		Bloor	n's Level
CO1	Define various forms of	intellectual property a	and patent	1-Re	member
CO2	Explain the registration procedure for various forms of intellectual property 2-Understand		derstand		
CO3	Draft patent application 3-Apply		Apply		
	Course Content				
Unit I	Introduction to IP, Patent Basic, and Patent filing procedure (L05)		CO1, CO2		
Unit II	Copyright basic, Industr	rial Design, Emerging	issue, (L05)		CO1, CO2
Unit III	,		CO1, CO2		
Unit IV	Trade secret, Comparative analysis, IP management(L05) CO1, CO		CO1, CO2		
Unit V	Unit V Invention as a solution to an unsolved problem, Drafting a Claim, CO1, CO3 Types and Arrangement of Claims, Structure of the Patent Specification(L05)				
	NPTEL Course				
1	1 https://archive.nptel.ac.in/courses/109/106/109106128/ NPTEL Course on "Paten Drafting For Beginners"			e on "Patent	
2	https://archive.nptel.ac.in/courses/109/105/109105112/ NPTEL Course on "Introduction On Intellectual Property To Engineers And Technologists"				

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three Assignments and LMS Tests on Unit-1, Unit -2, Unit -3.	30	
2	Group Presentations on Unit-4 and Unit-5.	20	
	Total	50	

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering			
CHE223009: Piping Design and Engineering			
Teaching Scheme: Credit Scheme:3 Examination scheme:		Examination scheme:	
Theory: 3 hrs/week		In Semester Exam: 20 marks	
		End Semesters Exam: 60 marks	
		Continuous Comprehensive Evaluation: 20 marks	

Total: 100 Marks

Prerequisites: Courses of Fluid Mechanics, Chemical Engineering Materials

Course Objectives:

- 1. To introduce the concepts of piping design, abbreviations used in piping engineering.
- 2. To identify the various piping components required in industry.
- 3. To apply the various concepts of piping supports, stress analysis.

Course Outcomes: On completion of the course, learner will be able to:-

Sr. No	Course Outcomes	Bloom's Level
CO1	Utilise the piping design basic concept for designing of plant.	2-Understand
CO2	Implementing the appropriate pipe components as per the requirement in industries.	3-Apply
CO3	Distinguish between different piping flow diagrams such as piping isometric, P&IDs.	2-Understand
CO4	Prepare the piping layout as well as piping isometric.	3-Apply
CO5	Predicting the stress in a pipe line and distinguish between different piping supports as per the applications.	4-Analyse
G		

Course Contents:

Unit 1 Introduction to piping designing & engineering (L08) COs Mapped: CO1

Evolution of piping, Manufacturing methods, Piping materials and selection, Pipe dimensioning Schedule numbers, Common piping abbreviations, Major organizations for standards, ASME/ANSI Codes & Specification, Specification classes. Type of Fittings - elbows, weld tee, stub in, mitre bends, reinforcement pad calculation for branch connections, couplings, reducers, weld cap, screwed and socket welded fittings, blanks, reducers, expansion joints, pipe nipples, flanged fittings and use of fittings, Type Flange -Types, P-T ratings and facings, Gaskets, bolts and nuts.

Unit 2 Materials for Piping (L07)

COs Mapped: CO2

Selection of material for piping, desirable properties of piping materials, materials for various Temperature and pressure conditions, materials for corrosion resistance. Common ASTM and IS specifications for: Seamless / ERW pipes, materials for valves, Gaskets. Insulation for Hot and cold materials and their important properties, insulation material selection criteria, Typical insulation specification – hot and cold materials.

Unit 3 Piping Engineering drawings and its concept (L07) COs Mapped: CO3

Uses of flow diagrams, process flow diagrams, mechanical flow diagrams, utility flow diagrams, piping symbols, line symbols, valve symbols, piping isometrics, general arrangement drawings- sections/elevations/ detail drawings, plot plan procedures, Purpose of P&ID'S, study of P&ID'S, symbols usage according to industrial practices, Purpose of P&ID in process industrial/plants. Introduction to equipment layout, piping layout, piping isometrics and bill of material.

(Autonomous from Academic Year 2022-23)

Unit 4 Design of Pipe racks and storage terminals (L07) COs Mapped: CO4

Design of Pipe Rack, Pipe Rack Spacing, Placing Lines, Width & Height Calculations, development of Pipe Rack Layouts and Isometric Preparation, Design of Storage terminal, need of Tank Farm, development of Equipment and Piping Layouts, Nozzle Orientation.

Unit 5 Piping Supports and introduction to stress analysis (L07) COs Mapped: CO5

Pipe Supports, pipe insulation shoes, pipe guides, field supports, dummy supports, hanger rods, spring hangers, pick-up, control valve manifolds, utility stations, sewer and underground piping system, Introduction to Pipe Stress Analysis, various methods of releasing stress in piping system, support selection to minimize stresses in piping system using support span calculations and loop calculations.

- 1. Piping Design Handbook, John J. Mcketta, CRC Press, 1st Edition.
- 2. Process plant layout and piping design by Ed Bausbacher& Roger Pearson Prentice Hall, 1st Edition
- 3. Piping Handbook, Edited, Mohinder Nayyar, McGraw-Hill Professional, 7th Edition
- 4. Pipe Drafting and Design by Roy A Parisher, Elsevier, 3rd Edition

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
r r r r r r r r r r r r r r r r r r r		Marks Allotted	
No.	Evaluation		
1	Three assignments on unit-1, unit-2, unit-3 & 4	10	
2	Group presentation on unit-5	05	
3	LMS Test on each unit	05	
	Total	20	

W Collection K

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

Semester: V (TY - B. Tech.) Chemical Engineering CHE223010:Seminar			
Teaching Scheme:	Credit Scheme:2	Examination scheme:	
Tutorial: 1 hr/Week		Tut: 25 Marks	
Practical: 2 Hrs. /Week		TW: 25 Marks	
		Total: 50 Marks	

Prerequisites: Basic knowledge of chemical engineering principles and processes, familiarity with academic research methods and resources.

Course Objectives:

slides.

- 1. To develop the skills necessary for identifying and selecting a relevant topic in the field of Chemical Engineering for seminar presentation.
- 2. To provide students with the ability to conduct comprehensive literature surveys to gather information from various sources such as reference books, journals, and the internet.
- 3. To enhance students' technical writing skills by preparing a seminar report using standard formatting guidelines.

Course Outcomes: On completion of the course, learner will be able to:-		
Sr. No	Course Outcomes	Bloom's
		Level
CO1	Develop the ability to critically assess and evaluate research data relevant to Chemical Engineering.	5- Evaluate
CO2	Acquire the skills to compile this data into a well-organized seminar report, adhering to academic standards.	3-Apply
CO3	Exhibit effective communication skills by delivering a informative seminar presentation supported by visual aids such as PowerPoint	3-Apply

Course Contents:

Module 1	Introduction and Topic Selection (L04)	COs Mapped: CO1
Seminar Course Int	roduction,, Guidance of Seminar topic selection,	Discussion on Literature
Survey Methods		

Module 2 Literature Survey (L04) COs Mapped: CO2

Understanding the importance of literature surveys in research, Techniques for conducting effective literature searches.

Module 3 Technical Writing (L04) COs Mapped: CO3

Develop Technical Writing Skills for Seminar Reports, Understand Report Organization: Introduction, Literature Survey, Results, Discussion, Conclusions, References, Prepare Seminar Presentations: Design PowerPoint slides, Structure Presentation

Guidelines for Tutorial Evaluation Components for Tutorial Evaluation Sr. Marks No. Allotted Two Assignments on Module 1 and Module 2 1 10 Group Presentation on Module 3 2 10 3. LMS Test on Each Unit 05 **Total** 25

Guidelines for Term work Assessment

Term work assessment of seminar is to be based on overall performance of students, which includes the following parameters: timely completion of tasks, performance quality, punctuality, participation, and contribution in various seminar activities such as literature

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

study, presentations, and teamwork. Students will prepare a seminar report and deliver a PowerPoint presentation on the seminar topic.

Format of the Seminar report and TW assessment:

- 1. The Seminar report should be based on a detailed study of any relevant topic to Chemical Engineering. The typing shall be with normal spacing and on one side of the paper.
- 2. The report should be submitted in spiral bound format.
- 3. Front cover: This shall have the following details.
 - Title of the seminar report.
 - The name of the candidate with roll number / examination seat number at the middle.
 - Name of the guide below the candidate's details.
 - The name of the institute and year of submission on separate lines at the bottom.
- 4. The format of the text of the seminar reports:
 - The report shall be presented in the form of a technical paper. The introduction should be followed by literature survey.
 - The result-discussion and conclusions shall form the last part of the text. Nomenclature and symbols should be added. References should be written in the standard format after the conclusion.
 - The total number of typed pages, excluding cover shall be about 25 to 30. All the pages should be numbered. This includes figures and diagrams.
- 5. Two copies of the seminar report shall be submitted to the Institute. The candidate shall present the seminar through power point presentation. The total duration of presentation and discussion should be about 30 minutes max. [25 min + 5 min].

Ville K

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

Semester: VI (TY - B. Tech.) Chemical Engineering CHE223011: Mass Transfer II			
Teaching Scheme: Credit Scheme: Examination scheme:		Examination scheme:	
Theory: 3 hrs/week		In Semester Exam: 20 marks	
		End Semesters Exam: 60 marks	
		Continuous Comprehensive Evaluation: 20 marks	
		Total: 100 Marks	

Prerequisites: Fundamental Knowledge of principles of mass transfer, process calculations, Thermodynamics and unit operations in Chemical Engineering

Course Objectives:

- 1. To acquire basic understanding of Mass Transfer operations, their principles used in Chemical industries.
- 2. To apply the knowledge for the process design of mass transfer operations for the separation of mixtures
- 3. To be able to operate the mass transfer operations in Chemical process industries.

Course Outcomes: On completion of the course, learner will be able to:-

Sr. No	Course Outcomes	Bloom's Level
CO1	Apply the principles of Distillation operation for its process	3-Apply
	design and operations.	
CO2	Separate the liquid mixtures based on solubility of solute in	4-Evaluate
CO2	selective solvent using solvent Extraction.	
	Apply the principles of leaching operation and produce the	3-Apply
CO ₃	preferential solution of solute from solids using solvent in	
	Leaching operation	
	Illustrate the adsorption and ion Exchange techniques for the	2-Understand
CO4	separation by concentrating the specific substances using the	
ļ	surface phenomenon.	
	Select and design of the crystallizer for deriving the crystalline	6-Create
CO5	products and acquire the understanding of novel separation	
	techniques.	
	Course Contents	

Unit 1 Distillation (L08) COs Mapped:

Basic Distillation, concept of relative volatility, Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, Batch, azeotropic and extractive distillation, binary and multi-component systems, Reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of plates, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation, Fenske's equation, Fenske-Underwood equation, use of open steam, Partial and total Condensers, reboilers, tray efficiencies

Unit 2	Solvent Extraction (L07)	COs Mapped:
		CO2

Principles of solvent Extraction, Applications in industry, Ternary liquid equilibria, systems of three liquids, Effect of temperature, Choice of solvent, distribution coefficient, Selectivity, Stage wise Contact: single stage extraction, multistage crosscurrent, countercurrent and co-current extraction, calculations based on triangular diagrams, x – y coordinates and solvent

(Autonomous from Academic Year 2022-23)

free basis, Continuous counter current extraction, stage efficiency, Differential (continuous contact extraction); packed towers, HTU and NTU concept, Numericals, types of extractors, Stage wise Extractors, Mixer- settler, Sieve Tray Extraction, Rotating Disk Contactor, Scheibel Extractor, Pulsed Column, Centrifugal Extractor

Unit 3	Leaching (L07)	COs Mapped:
		CO ₃

Principles of Leaching, Applications in industry, Factors affecting the rate of leaching, preparation of solids, temperature, Graphical representation of equilibrium, Methods of operation and equipment; unsteady state operation and steady state operations - continuous counter current leaching, ideal stage equilibrium, operating time, retention of liquid, percolation tank, filter press leaching, agitated vessels, constant and variable underflow, number of ideal stages, stage efficiencies, calculation of single stage and multistage leaching processes, Continuous countercurrent decantation, Rotocel, Bollman Extractor, Kennedy Extractor, Pachuka tank, Supercritical extraction

Unit 4	Adsorption and Ion Exchange (L07)	COs Mapped:
		CO4

Adsorption: Principles of Adsorption: Physical and chemical adsorption, Nature of adsorbents, adsorption equilibrium and isotherms, Adsorption Hysteresis, effect of temperature, Single-stage, multi-stage cross-current and multi-stage counter current operations, Fixed bed equilibrium and operating lines, adsorption Isotherms-Langmuir and Freundlich, Liquid-solid agitated vessel adsorbed, packed continuous adsorption, breakthrough curves, Adsorption model, pressure-swing adsorption, Ion Exchange- Principles of Ion Exchange Equilibrium and rate of ion exchange, Applications

Unit 5	Crystallization and Novel Separation Techniques (L07)	COs Mapped:
		CO5

Principle of crystallization, rate of crystal growth, size distribution, Mechanism of crystallization, Solubility curves, Methods of super saturation, Mier's super saturation theory, material balance, enthalpybalances, calculation of yield, Numericals, Classification of Crystallizers; Agitated Tank Crystallizer, Swenson-Walker Crystallizer, Vacuum Crystallizer, Oslo Crystallizer. Introduction to membrane separation techniques: ultra-filtration, Nano-filtration, reverse osmosis, types of membranes and membrane modules, fluxes and driving forces in membrane separation processes.

- 1. Mass Transfer Operations, Treybal R.E., McGraw Hill, 3rd Edition.
- 2. Chemical Engineering, Vol I & II, Coulson J.M. and |Richardson J.F., McGraw Hill, 6th Edition.
- 3. Principles of Unit Operations, Wiley Student Edition, 2nd Edition.
- 4. Separation Processes, C. Judson King, 2nd Edition.
- 5. Design of Equilibrium Stage Processes, Buford D.Smith, McGraw Hill.
- 6. Unit Operations of Chemical Engineering, W. L. McCabe, J. C. Smith and Peter Harriott, McGraw Hill, 7th Edition.

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Marks Allotted			
1	Three assignments on unit-1, unit-2, unit-3 & 4	10		
2	Group presentation on unit-5	05		
3	LMS Test on each unit	05		
	Total	20		

(Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering					
Taaahir			Reaction Engineering Examination scheme:	<u>u</u>	
0					
I neory:	Theory: 3 hrs/week In Semester Exam: 20 marks				
			End Semesters Exam: 60 ma		
			Continuous Comprehensive F Total: 100 Marks	Evaluation: 20 marks	
Preregni	isites: Conce	ot of rate controlling sto			
	Objectives:	or or race controlling be	ep, reaction kinetics		
	•	inetics of heterogeneou	is reactions		
		-fluid, fluid-particle rea			
	•	ytic reactions for desig			
	Outcomes: O		urse, learner will be able to:-	1	
Sr. No		Course Out		Bloom's Level	
CO1	Determine applications		r fluid-particle reactions and	3-Apply	
CO2	Apply the k design of re	_	l heterogeneous reactions for	3-Apply	
CO3	Demonstrate adsorption	e the nature and m	echanism of catalysis and	3-Apply	
CO4	Apply the l reactions.	3-Apply			
CO5	Design hete	rogeneous reactors for	catalytic reactions	6- Create	
		Course	Contents:	1	
		us reactions (L07)		COs Mapped:CO1	
			acting patterns, fluid-particle		
			conversion model, Rate of rea		
	ed bed with e		ntrolling step, application to	design, application	
				COs Mapped: CO2	
	Unit 2Fluid – Fluid Reaction (L07)COs Mapped: CO2Two film theory, Rate equation for reaction, kinetic regimes, film conversion parameter,				
			ept of enhancement factor, ag		
		st and slow reactions)		7	
-		d Adsorption (L08)		COs Mapped: CO3	
Surface of	chemistry and	d adsorption, adsorption	on isotherms and rates of add	sorption. Catalysis:	
		<u> </u>	od, void volume and solid de	· -	
distribution, catalyst selection, preparation of catalyst and its deactivation, poisoning and					
regeneration, nature and mechanism of catalytic reactions.					
Unit 4 Diffusion in porous catalytic reactions (L07) COs Mapped: CO4					
Gaseous diffusion in single cylindrical pore, diffusion in liquids, in porous catalyst, surface diffusion, mass transfer with reaction: effectiveness factor, experimental and calculated					
effectiveness factor, selectivity's for porous catalysts, rates for poisoned porous catalysts.					
Unit 5 Design of heterogeneous catalytic reactors (L07) COs Mapped: CO5					
			; isothermal and adiabatic		
fluidized	fluidized bed reactor, slurry reactor, enzyme fermentation: Michaelis-Menten (M-M)				
kinetics, inhibition by foreign substance.					

(Autonomous from Academic Year 2022-23)

- 1. Chemical Reaction Engineering, Octave Levenspiel, Wiley, 3rd Edition.
- 2. Chemical Engineering Kinetics, J. M.Smith, McGraw-Hill Education, 3rd Edition.
- 3. Elements of Chemical Reaction Engineering, H. Scott, Fogler. Prentice Hall India Learning Private Limited, $4^{\rm th}$ Edition.
- 4. Heterogeneous Reactions: Analysis Examples and reactor Design. Vol.1 & 2, L. K. Doraiswamy and M. M Sharma
- 5. An Introduction to Chemical Reaction Kinetics & Reactor Design, C. G. Hill, John Wiley & Sons.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three assignments on unit-1, unit-2, unit-3 & 4	10			
2	Group Presentation on unit-5	05			
3	LMS Test on each unit	05			
	Total	20			

(Autonomous from Academic Year 2022-23)

Semester: VI (TY - B. Tech.) Chemical Engineering				
CHE223013: Lab work in Mass Transfer II				
Teaching Scheme:	Teaching Scheme: Credit Scheme:1 Examination scheme:			
Practical: 2Hrs. /Week		TW: 25 marks		
		Practical: 25 marks		
Total: 50 Marks				

Prerequisites: Fundamental Knowledge of principles of mass transfer, process calculations, Thermodynamics and unit operations in Chemical Engineering

Course Objectives:

- 1. To acquire basic understanding of Mass Transfer operations, their principles used in Chemical industries.
- 2. To apply the knowledge for the process design of mass transfer operations for the separation of mixtures
- 3. To be able to operate the mass transfer operations in Chemical process industries.

Course Outcomes: On completion of the course, learner will be able to:-

Sr. No.	Course Outcomes	Bloom's		
		Level		
CO1	Understand Basic principle of Distillation operation and its application	2- Understand		
COI	in separation of components.			
CO2	Evaluate the number of theoretical stages for packed bed distillation	5- Evaluate		
COZ	Column.			
	Separate the liquid mixtures based on solubility of solute in selective			
CO3	solvent using solvent Extraction and apply the principles of solid-liquid			
	Extraction (leaching) for Solid-liquid separation.			
CO4	Select and design of the crystallizer for deriving the crystalline	6-Create		
CO4	products and acquire the understanding of novel separation techniques.			
	Illustrate the adsorption and ion Exchange techniques for the	2- Understand		
CO5	separation by concentrating the specific substances using the surface			
	phenomenon.			

Suggested List of Laboratory Assignments:

Sr. No.	Laboratory Experiments	COs Mapped	
1.	Simple Batch Distillation	CO1, CO2	
2.	Steam Distillation	CO1, CO2	
3.	Distillation with Total Reflux	CO1, CO2	
4.	Vacuum Distillation	CO1, CO2	
5.	Distillation using Sieve Plate, Column	CO1, CO2	
6.	Liquid-liquid equilibrium for ternary system	CO3	
7.	Liquid – Liquid Extraction (single stage and multistage)	CO3	
8.	Characterization of Spray Extraction Column	CO3	
9.	York Scheibel Column	CO3	
10.	Batch/ Continuous Leaching	CO3	
11.	Batch Crystallization	CO4	
12.	Ion Exchange	CO5	

(Autonomous from Academic Year 2022-23)

13. Adsorption (batch or column study)

CO₅

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students with its procedure, observations, calculation, and outcome of the experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- After performing the experiment, students will perform calculations based on the obtained readings and get it verified from the teacher.
- Students will then complete the experimental write up.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, results, conclusions, etc.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

K.

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

	Semester: VI (TY - B. Tech.) Chemical Engineering				
	CHE223014A: Renewable Energy				
Teachi	Teaching Scheme: Credit Scheme:3 Examination scheme:				
	Theory: 3 hrs/week In Semester Exam: 20 marks			ks	
		End Semesters Exam: 60 m	End Semesters Exam: 60 marks		
	Continuous Comprehensive Eva			Evaluation: 20 marks	
			Total: 100 Marks		
			Physics, Thermodynamics, F	luid Mechanics, Heat	
		neering, Environmental	Science.		
	Objectives:				
		· ·	enewables, and energy conver	•	
			nergy technologies, and appliced its use in fuel cells and tran		
			urse, learner will be able to:		
Sr. No	Cutcomes. O	Course Out	*	Bloom's Level	
	Classify vari		valuate their availability, and		
CO1	•	erent methods of energy		2- Oliderstand	
CO2	Illustrate the	renewable energy relate	ed to biomass technologies.	4- Analyze	
CO3	Illustrate con	version technologies fo	or solar and its applications.	4- Analyze	
CO4	Understand	waste-to-energy conv	ersion processes and thei	r 2- Understand	
CO4	environmenta	al impacts, proposing m	nitigation measures.		
CO5	Understand t	he fundamentals of hy	ydrogen energy systems and	d 2- Understand	
<u></u>	the productio	n processes of hydroge			
			e Contents:		
Unit 1		energy (L07)		COs Mapped: CO1	
			newable energy sources,		
			es, Basics of energy: Differ		
			energy conversion. Convent	ional energy systems:	
	* 	various methods of pow		Og Mannadi CO2	
Unit 2		m Biomass (L08)	l l	COs Mapped: CO2	
			e, Biomass Conversion Tonts, Biomass Gasification, I		
		•	Engine Applications of Bio		
Unit 3	Solar Energ		•	COs Mapped: CO3	
			its measurement, solar ene		
energy storage methods, Photovoltaic systems, Application of solar energy. Solar PV modules, Applications of solar PV systems: water pumping application, home & street					
lighting applications etc.					
	Waste to en		(COs Mapped: CO4	
	Introduction to Energy from waste: classification of waste as fuel: Agro-based waste, forest				
residue, industrial waste. MSW conversion devices: incinerators, gasifiers, digesters.					
	Environmental monitoring system for land fill gases, Mitigating Environmental Impacts of				
Waste In	ncineration.				
Unit 5	Hydrogen e			COs Mapped: CO5	
			Electrochemical and Biol	•	
Hydroge	Hydrogen Storage and Transportation, Applications of Hydrogen Fuel Cells, Hydrogen-				

(Autonomous from Academic Year 2022-23)

Based Fuel for Vehicles.

- 1. Non-Conventional Energy Sources, G. D. Rai, Khanna Publishers.
- 2. Non-Conventional Energy Sources, T.P. Ojha Rajesh K. Prasad, Jain Brothers, 4th Edition.
- 3. Solar energy Thermal Collection and storage, P. S. Sukhatme, McGraw Hill Education, 3rd Edition.
- 4. Powerplant Technology, M. M. El-Wakil, McGraw Hill Education, 1st Edition.

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Three assignments on unit-1, unit-2, unit-3 & 4	10		
2	Group presentation on unit-5	05		
3	LMS Test on each unit	05		
	Total	20		

(Autonomous from Academic Year 2022-23)

Semester VI (TY B. Tech.) Chemical Engineering							
CHE223014B: Chemical Process Synthesis							
Teaching Scheme:		Credit Scheme:3	Examination scheme:				
Theory: 3 hrs/week			In Semester Exam: 20 marks				
			End Semesters Exam: 60 marks				
1			Continuous Comprehensive Evaluation: 20		e Evaluation: 20		
			marks				
Dromognicitor Posic		Concepts of heat transfe	Total: 100 Marks	n			
•	Objectives:	concepts of fleat transfe	i, mass transfer, desig	111.			
	· ·	w to invent chemical pr	rocess flow sheets				
		w to develop process al		erate	them and how to		
	ckly screen the						
_	•	n completion of the cou	arse, learner will be ab	le to:	-		
Sr. No		Course Outco			Bloom's Level		
CO1	-	process development, as design, hierarchy of process		ons,	2-Understand		
CO2		types of reactions, Separation techniques.	kinetics, reaction pa	iths,	2-Understand		
CO3		nch technology in orde	er to optimize the ene	ergy	3-Apply		
CO4	_	ation sequencing, heat illation columns.	integration of sequer	nces	3-Apply		
CO5		ficient Heat Excha problem table algorit	_	inch ems	5-Evaluate		
			Contents:				
Unit 1		to Chemical Process	<u> </u>		Mapped: CO1		
		h to process develop					
		opment of particular p	·	ess a	esign, nierarchy of		
Unit 2		model, approach to pro eactor and separator		COs	Mapped: CO2		
			` ′				
Reaction path, types of reaction systems, reactor performance, idealized reactor models, reactor concentration, temperature, pressure, phase, catalyst. Separation of heterogeneous							
mixtures, separations of homogeneous mixtures, distillation, azeotropic distillation,							
absorption, evaporation, drying etc							
Unit 3 Pinch Technology-an overview (L07) COs Mapped: CO3, CO5							
Introduction, Basic concepts, How it is different from energy auditing, Roles of							
thermodynamic laws, problems addressed by Pinch Technology. Key steps of Pinch							
Technology: Concept of ΔTmin, Data Extraction, Targeting, Designing, Optimization,							
Super-targeting, Basic Elements of Pinch Technology: Grid Diagram, Composite curve, Problem Table Algorithm, Grand Composite Curve.							
Unit 4 Distillation Sequencing (L07) COs Mapped: CO4							
	ion sequencin	g using simple colum	nns, heat integration	of se	equences of simple		
uistillati	distillation columns, distillation sequencing using thermal coupling, optimization of						

(Autonomous from Academic Year 2022-23)

reducible structure, Retrofit of distillation systems.

Unit 5 | Heat Exchanger Network (L08) | COs Mapped: CO5

Targeting of Heat Exchanger Network: Energy Targeting, Area Targeting, Number of units targeting, Shell Targeting and Cost targeting. Pinch Design Methods, Heuristic 10rules, stream splitting, design of maximum energy recovery(MER). Use of multiple utilities and concept of utility pinches, Design for multiple utilities pinches, Concept of threshold problems and design strategy. Network evolution and evaluation, identification of loops and paths, loop breaking and path relaxation. Design tools to achieve targets, Driving force plot, remaining problem analysis, diverse pinch concepts. Targeting and designing of HENs with different ΔTmin values, Variation of cost of utility, fixed cost, TAC, number of shells and total area with ΔTmin Capital-Energy tradeoffs.

- 1. Chemical Process: Design and Integration, Robin Smith, Wiley-Blackwell.
- 2. Conceptual design of chemical process-James Douglas, McGraw-Hill Education.
- 3. Unit process in organic synthesis P.H. Groggins, McGraw Hill Education.
- 4. Dryden's Outlines Of Chemical Technology, M Gopal Rao, Marshal Sittig, East-west press 3rd Edition
- 5. Heat Exchanger Network Synthesis, U. V Shenoy, Gulf Publishing Company.

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr.	Components for Continuous Comprehensive	Marks Allotted				
No.	Evaluation					
1	Three assignments on unit-1, unit-2, unit-3 & 4	10				
2	Group presentation on unit-5	05				
3	LMS Test on each unit	05				
	Total	20				

(Autonomous from Academic Year 2022-23)

Semester: VI (TY - B. Tech.) Chemical Engineering			
CHE223015A: Heat Transfer Operations			
Teaching Scheme: Credit Scheme: Examination scheme:		Examination scheme:	
Theory: 3 hrs/week		In Semester Exam: 20 marks	
		End Semesters Exam: 60 marks	
		Continuous Comprehensive Evaluation: 20 marks	
		Total: 100 Marks	

Prerequisites: -Applied Mathematics, Basics of Heat Transfer, Thermodynamics

Course Objectives:

- 1. To use heat transfer principles to understand the behavior of thermal systems.
- 2. To recognize the various applications of heat Transfer equipments
- 3. To provide the basic knowledge in thermal system design and to enlighten heat transfer applications.

Course Outcomes: On completion of the course, learner will be able to:-

Sr. No	Course Outcomes	Bloom's
		Level
	Demonstrate concepts of conduction and evaluate the	5- Evaluate
CO1	conduction problem Illustrate the renewable energy related to	
	biomass technologies.	
CO2	Analyze theoretical prediction of heat transfer coefficients and	4-Analyze
CO2	practical aspects of condensation.	
CO3	Apply the knowledge of the Process design aspects of boiling	3- Apply
COS	and evaporators	
CO4	Select and design of jackets and coils for agitated vessels for	6-Create
CO4	heat transfer aspects	
CO5	Classify various types of boilers and their mountings and	3- Apply
005	accessories along with the design of Fired Heaters and furnace	

Course Contents:

Fundamentals of Heat Conduction (L08)

COs Mapped: CO1

General heat Conduction equation-initial and boundary conditions. Conduction with heat source. Transient heat conduction- Lumped system analysis-Heisler charts-semi-infinite solid-use of shape factors in conduction-2D transient heat conduction. Extended surface heat transfer. Theories of heat transfer and analogy between momentum and heat transfer, Heat transfer outside various geometries in forced convection, such as single sphere, bank of tubes or cylinders, packed and fluidized beds.

Condensation and Condenser Design (L07)

COs Mapped: CO2

Condensation of vapours: theoretical prediction of heat transfer coefficients, practical aspects, horizontal versus vertical condensation outside tubes, condensation inside tubes, Process Design aspects of total condensers, condensers with de-superheating and subcooling, condensers of multicomponent mixture, condensation of vapours in presence of noncondensables. condenser and reboiler design.

Unit 3 | Heat Transfer in Boiling and Evaporation Processes (L07) | COs Mapped: CO3

Heat transfer to boiling liquids: Process design aspects of evaporators, natural and forced circulation reboilers, Finned tube exchangers, air-cooled cross flow exchangers and their process design aspects

(Autonomous from Academic Year 2022-23)

Unit 4	Heat Transfer in Agitated Vessels and Jacketed Systems	COs Mapped: CO4
	(L07)	

Heat transfer in agitated vessels: coils, Types of jackets, limpet coils, calculation of heat transfer coefficients, Overall heat Transfer coefficient, heating and cooling times, applications to batch reactors and batch processes. Process Design of Jacketed agitated vessel.

Unit 5 Boilers and Fired Heater Design (L07)

COs Mapped: CO5

Boilers, classification, construction features, Boiler Accessories and Mountings, Economiser, super-heater, pre-heater, Types of Fired Heaters, furnace design equations, fire heater design features and applications.

REFERENCE BOOKS:

- 1. Fundamentals of Engineering Heat and Mass Transfer (SI Units), R.C. Sachdeva, New Age International Publishers, 5th edition
- 2. Heat and Mass Transfer, P K Nag, McGraw-Hill publications, 3rd Edition
- 1. Process Heat Transfer, D. Q. Kern., Tata McGraw Hill Publication, New Delhi, 11th Edition
- 2. Heat Transfer, J P Holman, Tata McGraw Hill Publications, New Delhi, 9th Edition
- 3. A Textbook on Heat Transfer, S. P. Sukhatme, Universities Press (India) , 4th Edition
- 4. Transport phenomena, Bird R.B., Stewart W.E., Lightfoot E.N, Wiley Publications, 2nd Edition
- 5. Heat and Mass Transfer, Yunus A. Cengel., Tata McGraw Hill Publications, New Delhi, 3rd Edition
- 6. Process Equipment Design, V. V. Mahajani and S. B. Umarji, Trinity Laxmi Publications, 5th Edition.

7. Process Equipment Design, Brownell Young, Wiley.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three assignments on unit-1, unit-2, unit-3 & 4	10	
2	Group presentation on unit-5	05	
3	LMS Test on each Unit	05	
	Total	20	

Samastar VI (TV D. Tack.) Chamical Engineering				
	Semester VI (TY B. Tech.) Chemical Engineering			
Tools	CHE223015B: Food Technology Tasshing Sahamas Credit Sahamas Evansing tion galamas			
	Teaching Scheme: Credit Scheme: Examination scheme:			1
Theory	y: 3 hrs/week		In Semester Exam: 20 ma	
			End Semesters Exam: 60	
			Continuous Comprehensiv	e Evaluation: 20 marks
			Total: 100 Marks	
		of Process Calculations	, Unit Operations and Unit l	Processes
	Objectives:	1 1 1 1 1 1 6 1 4		
			ter preservation techniques,	processing and value
	_	ltural products.		
			or food product and process	and guarantee
		ety of processed food i		
			ts about environmental issu	es and work towards
	tainable develo	opments.		
	Outcomes:			
On com	pletion of the	course, learner will be	able to:-	
Sr. No		Course Outo	comes	Bloom's Level
CO1	To impart kn	nowledge in various as	spects of Food Technology	3-Apply
COI	through Theo	ry and Practical knowle	edge.	
	To make the	students familiar wit	h the technologies of food	1-Knowledge
CO2	processing an	nd preservation of pla	ant foods fruits vegetables,	
	spices, milk a	and dairy products.	_	
CO2	To understand the principle of Unit operations and 2-Understand			
CO3	fundamentals of food engineering and its process			
CO.4	To acquaint concepts of food engineering and packaging in 2-Understand			
CO4	food industry.			
	To gain con	cepts of food safety	and quality managements,	1-Knowledge
CO5			s and regulations as well as	
	importance of food engineering and packaging in food industry.			
	1 1 11 11 11		e Contents:	
Unit 1	Principle	s of Food Processing		COs Mapped: CO1
			. Principles and methods	
		1 0	additives, fermentation, i	1
			ectric heating, microwave p	
_	•		<u>-</u>	
	food, modified atmosphere packaging. Refrigeration, freezing and drying of food, minimal processing, radiation processing.			
Unit 2	<u> </u>	gy of food Products (Milk Fruits and	COs Mapped: CO2
	Vegetable		viiii, i i uits and	cos Mappea. co2
Sources	Sources and composition of milk, processing of market milk, standardization, toning of milk,			
homogenization, pasteurization, sterilization, storage, transportation and distribution of milk.				
Milk product processing-cream. Principles and methods of fruit and vegetable preservation.				
Composition and related quality factors for processing. Principles of storage of fruits and				
vegetables. Types of storage: natural, ventilated low temperature storage. preservation of				
fruits and vegetables by heat, chemicals, sugar, salt, fermentation, drying etc. canning of				
	fruits and vegetables, tin cans, glass containers seaming technology, aseptic canning			
	technology. other value added products from milk and fruit and vegetables.			
Unit 3		s of Food Engineering	Ţ į	COs Mapped: CO3
Omt 3	I imcipie	a or room rengineering	(LUI)	COS Mappeu. COS

(Autonomous from Academic Year 2022-23)

Unit operation in food engineering processing of food grains, theory of size reduction equipment's and effect of size reduction on foods, evaporation extrusion, hot air dehydration, baking, roasting and hot oil frying theory, equipment's, applications and effect on food materials for freezing / freeze drying and freeze concentration.

Unit 4 Food Packaging (L07)

COs Mapped: CO4

Introduction to packaging. Packaging operation, package-functions and design. Principle in the development of protective packaging. Deteriorative changes in foodstuff and packaging methods for prevention, shelf life of packaged foodstuff, methods to extend shelf-life. Food containers-rigid containers, corrosion of containers (tin plate). Flexible packaging materials and their properties. Food packages-bags, pouches, wrappers, carton and other traditional package, containers-wooden boxes, crates, plywood and wire bound boxes, corrugated and fibre board boxes, textile and paper sacks.

Unit 5 Food Quality Assurance (L07)

COs Mapped: CO5

Objectives, importance and functions of quality control. Methods of quality, concepts of rheology, assessment of food materials-fruits, vegetables, cereals, dairy products, meat, poultry, egg and processed food products. Food regulations, grades and standards, concept of Codex Almentarious/HACCP/USFDA/ISO 9000 series etc. Food adulteration and food safety, basis, trends and composition of India's foreign trade.

REFERENCE BOOKS:

- 1. Physical Properties of Food and Food Processing Systems, M.J Lewis, Woodhead Publishing, 1st Edition.
- 2. Fundamentals of food Engineering, S. E Charm. Avi Publishing Co Inc, 2nd Revised Edition.
- 3. Encyclopedia of food Engineering, C W Hall, A W Farral, A L Rippen, Avi Publishing Co Inc..
- 4. Food Science and Processing Technology Vol I & II, Mridula Mirajkar, Menon Sreelata, S Mridula Menon Mirajkar, Kanishka Publishing House.
- 5. Food Processing Technology Principles and Practice, P J Fellows, Woodhead Publishing, 4th Edition
- 6. Handbook of Food Engineering, Dennis R. Heldman, Daryl B. Lund, Cristina Sabliov, CRC Press, 3rd Edition.
- 7. Handbook of Analysis and Quality Control for Fruits and Vegetable Products, S. Ranganna, McGraw Hill Education, 3rd Edition.
- 8. A Handbook of Food Packaging, Frank A. Paine, Heather Y. Paine, Springer-Verlag New York Inc., 2nd Edition

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr.	Components for Continuous Comprehensive	Marks Allotted	
No.	Evaluation		
1	Three assignments on unit-1, unit-2, unit-3 & 4	10	
2	Group presentation on unit-5	05	
3	LMS Test on each unit	05	
	Total	20	

(Autonomous from Academic Year 2022-23)

Semester: VI (TY - B. Tech.) Chemical Engineering			
CHE223016A: Lab work in Renewable Energy			
Teaching Scheme:	Credit Scheme:1	Examination scheme:	
Practical: 2hrs. /Week		TW: 25 marks	
		Oral: 25 marks	
		Total: 50 Marks	

Prerequisites: Basic knowledge of Chemistry, Physics, Thermodynamics, Fluid Mechanics, Heat Transfer, Process Engineering, Environmental Science.

Course Objectives:

- 1. To understand energy sources, including renewables, and energy conversion processes.
- 2. To explore biomass, solar, and waste-to-energy technologies, and applications.
- 3. To study hydrogen production, storage, and its use in fuel cells and transportation.

Course Outcomes:

On completion of the course, learner will be able to:-

Sr. No.	Course Outcomes	Bloom's Level
	Classify various energy sources, evaluate their availability, and compare different methods of energy conversion.	1-Knowledge
CO2	Illustrate the renewable energy related to biomass technologies. 1-Knowledge	
CO3	Illustrate conversion technologies for solar and its applications. 1-Knowledge	
	Understand waste-to-energy conversion processes and their environmental impacts, proposing mitigation measures.	
CO5	Understand the fundamentals of hydrogen energy systems and the production processes of hydrogen energy.	2-Understand

List of Suggested Experiments / Assignments			
Sr.	Experiments / Assignments	CO	
No.		Mapped	
1	Comparative Analysis of Renewable and Non-Renewable Energy	CO1	
	Sources.		
2	Case study of renewable energy sources and their conversion	CO1	
	processes.		
3	Comparative Analysis of Power Generation Methods.	CO1	
4	Efficiency Study of Conventional Energy Systems.	CO1	
5	Case study of Waste-to-Energy Facilities and Environmental	CO4	
	Management.		
6	Case study of Hydrogen Fuel Cell Applications in Transportation.	CO5	
7	Case study of challenges and opportunities in renewable energy	CO4	
	development.		
8	Case study in future trends, and innovations in renewable energy	CO4	
	technologies.		
	Guidelines for Termwork Assessment		

Term work assessment is to be based on overall performance of students, which includes the following parameters: timely completion of tasks, performance quality, punctuality, participation, and contribution in the experiments. Students will be evaluated based on the experiment, report and presentation.

(Autonomous from Academic Year 2022-23)

Semester: VI (TY - B. Tech.) Chemical Engineering CHE223016B: Lab work in Chemical Process Synthesis			
Teaching Scheme: Credit Scheme:1 Examination scheme:			
Practical: 2Hrs. /Week		TW: 25 marks	
		Oral: 25 marks	
		Total: 50 Marks	

Prerequisite: Basic Concepts of heat transfer, mass transfer, design.

Course Objectives:

- 1. To understand how to invent chemical process flowsheets
- 2. To understand how to develop process alternatives; how to generate them and how to quickly screen the alternatives.

Course Outcomes: On completion of the course, learner will be able to:-

Sr.	Course Outcomes	Bloom's
No.		Level
CO1	Interprete to process development, different considerations, overall process design, hierarchy of process design	2-Understand
CO2	Differentiate types of reactions, kinetics, reaction paths, reactors and Separation techniques.	2-Understand
CO3	Apply the pinch technology in order to optimize the energy usage in industries	3-Apply
CO4	Design distillation sequencing, heat integration of sequences of simple distillation columns.	6- Create
CO5	Evaluate efficient Heat Exchanger Networks: Pinch Technology, problem table algorithm, Threshold problems etc.	5-Evaluate

Suggested List of Laboratory Assignments:

Term work and oral will be based on technical report prepared by individual or small groups (2-3) of students, focusing on Case study on Choice of reactor based on performance of reactor, Choice of reactor based on reactor model, Choice of Separators used in chemical process industries and Distillation sequencing using simple columns and their application in petroleum industries. Students are expected to deliver seminar presentation using audio-visual techniques on the topic. Students will be evaluated based on the experiment, report and presentation.

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering CHE223017: Process Instrumentation		
Teaching Scheme: Credit Scheme: 3 Examination scheme:		
Theory: 3 hrs/week		In Semester Exam: 20 marks
		End Semesters Exam: 60 marks
		Continuous Comprehensive Evaluation: 20 marks
		Total: 100 Marks

Prerequisites:- basic knowledge of Fluid Mechanics, Physics / Basic Electrical Engineering, material and energy balance

Course Objectives:

- 1. To give a detailed knowledge on transducer characteristics and uncertainties in measurement, application of different sensors /transducers their signal conditioning and final control elements for instrumentation and control systems
- 2. To impart knowledge about the various techniques used for the measurement of primary industrial parameters like flow, level, temperature, pressure etc.
- 3. To study different chemical analysis methods for chemical characterization.

Course Outcomes:

On completion of the course, learner will be able to:-

Sr. No		Course Outcomes	Bloom's Level
CO1	Select	the instrument for various chemical processes.	2-Undestand
CO2	Use te	mperature measuring instruments in chemical industry.	3-Apply
CO3	Use pi	ressure measuring instruments in chemical industry.	3-Apply
CO4	Measu	are the flow and level using various measuring instruments	3-Apply
CO4	in che	mical industry.	
CO5	Distin	guish between various analytical methods possible for	2-Undestand
COS	chemi	cal analysis.	

Course Contents:

Unit 1 Process Instrumentation: Introduction (L07) COs Mapped: CO1

Importance of instruments in chemical process industries, Need and scope of process instrumentation, classification of process variables, measurement problem analysis, basic measurement terms, General classification of industrial instruments, Functional elements of instruments, static and Dynamic characteristics of measuring instruments (zeroth, first, and second-order instruments/ systems), measurement system configuration, transducer elements (types and Classification), Indicating and recording type instruments.

Unit 2 Temperature Measuring Instruments (L07)

COs Mapped: CO2

Temperature Measuring Instruments Introduction, classification, temperature scales, Mechanical Temperature Sensors- filled system thermometers, Expansion Thermometers, Electrical Temperature Sensors-RTD, thermistors, thermocouples, Radiation sensors- optical and radiation, Solid-State Sensors, Quartz Sensors.

Unit 3 Pressure Measuring Instruments (L07)

COs Mapped: CO3

Introduction, classification, pressure Scales, Mechanical pressure elements, liquid column element, elastic element, design of Bourdon Spring elements. Vacuum measurements, electronic pressure sensors. High pressure sensors like dead weight, strain gauge and capacitance.

ı	Unit 4	Level and Flow Me	asuring Instru	ments (L07)		COs Mapped	l: CO4
ı	Level meas	suring instruments:	Introduction.	classification.	Ball-float	mechanisms:	displacer

(Autonomous from Academic Year 2022-23)

Level measuring instruments: Introduction, classification, Ball-float mechanisms: displacer type, hydrostatic type, Hydrostatic differential and dry type differential pressure manometers, Force balance diaphragm systems: electromagnetic type, electrical capacitance type, impedance type. Bulk Solids Level Systems: Pressure sensitive, weighing capacitance bridge, ultrasonic. Flow measurement: Head flow meters: Orifice meter, Venturimeter, pitot tube. Variable area flow meters: Rotameter, orifice & tapered plug meters, piston-type, Vortex Shedding Thermal Mass Flow sensors.

Unit 5 Instrumental Methods of Chemical Analysis (L08) COs Mapped: CO5
Introduction, classification, basic components of analytical instruments, Absorption and Emission Spectrometric Methods: UV, visible and infrared (IR), AAS, MS, Refractometry, Chromatographic Methods: GC, LC, HPLC, Fundamentals of Imaging Techniques: SEM TEM, Electrochemical methods: measurement of pH, colorimetric, conducto-metric, potentiometric, Process instruments and automatic on-line analysis, Thermal Methods: TGA, DTA, DSC

REFERENCE BOOKS:

- 1. Instrument Engineers' Handbook (Process Measurement)- Bella G. Liptak, CRC PRESS
- 2. Instrumentation devices and systems- Rangan, Sharma, Mani, Tata McGraw Hill Publishing Co. Ltd.
- 3. Instrumental methods of analysis Willard, Merritt, Dean, Settle, CBS Publishers and Distributors
- 4. Instrumental approach to Chemical Analysis- Shrivastava, Jain, S. Chand and Co.
- 5. Handbook of Analytical Instruments- Khandpur, Tata McGraw Hill Publishing Co. Ltd..
- 6. Industrial Instrumentation, Donald P. Eckman CBS Publishers and Distributors Pvt. Ltd.

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
No.				
1	Three assignments on unit-1, unit-2, unit-3 & 4	10		
2	Group presentation on unit-5	05		
3	LMS Test on each unit	05		
	Total	20		

K.

REFERENCE BOOKS:

K. K. Wagh Institute of Engineering Education and Research, Nashik

	Semes	·	ech.) Chemical Engir mization Techniques		ng
Teachi	ng Scheme:	Credit Scheme:2	Examination scheme:		
Theory	: 2 hrs/week		Continuous Comprehens	ive Eva	aluation: 50 marks
	Total: 50 Marks				
		natical skills, Programm	ning Skills, Algorithms and	d Tech	niques, Domain-
_	Knowledge				
	Objectives:				
		nsive understanding of o	optimization principies. Odologies to solve chemica	Longin	agring
_	ization problei	_	duologies to solve chemica	n engin	leering
		luate Optimization Solut	tions		
			urse, learner will be able t	to:-	
Sr. No		Course Out			Bloom's
					Level
CO1	Understand	optimization terminolo	gy and principles and a	apply	2- Understand
CO1	them to form	ulate optimization prob	olems		
CO2	Apply mathe	ematical techniques su	ch as gradient-based me	thods	3- Apply
CO2	and Lagrange	e multipliers to solve of	•		
	Demonstrate	•		linear	3- Apply
CO3			mplex method and inte	erpret	
	_	results in engineering	* *		
CO4		-	nethods to solve con	nplex	3- Apply
		optimization problems			
CO5	_	optimization softwar		ocess	3- Apply
	synthesis, an	d control in real-world			
Unit 1	Introduct	tion to Optimization (e Contents:	COs	Mapped:CO1
			pes of optimization prob		
			nd concepts, Formulating		
<i>O</i> ,	rial engineerir	0.	na concepts, i ormatating	, optin	inzation prodictins
Unit 2		itical Tools for Optim	ization (L05)	COs	Mapped:CO2
			d methods, Newton's		od, Constrained
	-	_	ditions, Convex optimizat		· ·
Unit 3		rogramming (LP) (L0	_		Mapped:CO3
Formulat		0 0	and its variants, Duality		
		l interpretation of result			1 0 0
Unit 4	Nonlinea	r Programming (NLP) (L05)	COs	Mapped:CO4
Basics of	nonlinear opt	imization, Gradient-bas	sed methods: steepest des	cent, N	Newton's method,
Derivativ	Derivative-free optimization techniques, Convergence and global optimization.				
Unit 5	Applicati		tion in Industrial	COs	Mapped:CO5
	Engineer				
_		•	synthesis and design o	-	-
		and real-world application	ations, Integration of op	otimiza	ition software in
engineeri	ng practice.				

- 1. Optimization of Chemical Process, Thomas Edgar , David. Himmelblau McGraw-Hill Education, $2^{\rm nd}$ Edition
- 2. Engineering Optimization: Theory and Practice, Singiresu S. Rao, John Wiley & Sons, 4th Edition
- 3. Optimization for Engineering Design: Algorithms and Examples, Deb K, Prentice Hall India Learning Private Limited, 2nd Edition
- 4. Applied Mathematical Methods for Chemical Engineer, Norman W. Loney, CRS Press, 3rd Edition
- 5. Optimization: Theory and Practice, M.C. Joshi and Kannan M. Moudgalya, Alpha Science International Ltd, 1st Edition.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three assignments on unit-1, unit-2, unit-3 & 4	30			
2	Group presentation on unit-5	10			
3	LMS Test on each unit	10			
	Total	50			

K William K

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering
CHE223019: Computer Aided Chemical Engineering

Teaching Scheme:Credit Scheme:2Examination scheme:Tutorial: 1Hr. /WeekTutorial: 1TW: 25 marks

Practical: 2Hrs. /Week

Practical: 1

Practical: 25 marks
Total: 50 Marks

Prerequisite: Fundamental Knowledge of Mathematics, Process Calculations, Thermodynamics and unit operations and unit processes, Reaction Engineering etc.

Course Objectives:

- 1. To acquire basic understanding of the programming to solve chemical engineering problems
- 2. To apply the knowledge chemical process simulation for solving chemical engineering problems
- 3. To apply numerical Techniques in chemical engineering.

Course Outcomes: On completion of the course, learner will be able to:-

Sr. No.	Course Outcomes	Bloom's Level
CO1	Understand fundamentals of modelling and simulation	2- Understand
CO2	Analyze theory and apply programming knowledge to solve chemical engineering problems	4- Analyze
	Simulate chemical processes using chemical process simulation software.	5-Evaluate

Suggested List of Laboratory Assignments:

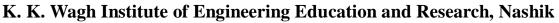
Minimum 10 Practical Assignments must be completed using computational as well as simulation softwares. Aspen plus, Hysys, ChemCAD, EnviroPro, ANSYS, Mathcad, Matlab, Unisim, DWSim etc. can be used for solving practical assignments

Sr. No.	Laboratory Experiments	COs Mapped
1.	Computer program for solving basic linear algebra involving matrix operations	CO1, CO2
2.	Computer program for solving non-linear algebraic equation/s	CO1, CO2
3.	Computer program for solving steady state staged operation (distillation, gas absorption, L-L extraction, etc.)	CO1, CO2
4.	Computer program for solving un-steady state staged operation (distillation, gas absorption, L-L extraction, etc.)	CO1, CO2
5.	Computer program for plotting P-x-y and T-x-y diagram	CO1, CO2
6.	Computer program for design of reactor/ heat exchangers. distillation column/or any chemical equipment	CO1, CO2
7.	Computer program for solving ODE or PDE using finite difference method	CO1, CO2
8.	Simulation of mass transfer equipment using simple and rigorous methods	CO3
9.	Simulation of product synthesis using different reactors	CO3
10.	Simulation of steady state flow sheet synthesis	CO3
11.	Simulation of dynamic flow sheet synthesis	CO3

(Autonomous from Academic Year 2022-23)

12.	Simulation of fluid flow problems with or without heat/mass CO3	
	transport	

Guidelines for Laboratory Conduction


- 1. Teacher will brief the given problem statement to students, its objectives and outcome.
- 2. Students will solve the allotted problem analytically if else and then using simulator.
- 3. After solving problem, students will check their simulated results from the teacher.
- 4. Students will then complete the write up.

Guidelines for Student's Lab Journal

Write-up should include title, software used, concept utilized, course useage and problem statement, conclusion, simulation steps, simulated results if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for 30 marks based on three rubrics.
- 2. Rubric R-1 is for timely completion, R-2 for understanding and R-3 for presentation/journal. Each rubric carries 10 marks.

(Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering			
	CHE223020: Project Phase I		

Teaching Scheme: Credit Scheme: 1 Examination scheme: Term work: 50 Marks

Prerequisite: Courses of Chemical Engineering

Course Objectives:

- 1. To understand the basic concepts & broad principles of projects.
- 2. To understand the value of achieving perfection in project implementation & completion.
- 3. To apply the theoretical concepts to solve real life problems with teamwork and Multidisciplinary approach.
- 4. To demonstrate professionalism with ethics; present effective communication skills and relate engineering issues to broader societal context.

Course Outcomes: on completion of course learner will be able to-

Sr. No.	Course Outcomes	Bloom's Level
CO1	Apply the knowledge gained from courses in Chemical	3-Apply
	Engineering curriculum to work on practical problems.	
CO2	Apply practical experience gained through the in-depth study of	3- Apply
	a challenging problem in Chemical Engineering field.	
CO3	Design solutions for innovative problems using engineering	6- Create
	skills.	
CO4	Acquire presentation skills, communication skills through report	4- Analyze
	writing.	
CO5	Acquaint the team working skills for a successful professional	4- Analyze
	career.	
	•	

Expected Working areas:

Project phase 1 is an integral part of the project work. The project work shall be based on the knowledge acquired by the student during the graduation and preferably it should meet and contribute towards the needs of the society. The project aims to provide an opportunity of designing and building complete system or subsystems in the field of Chemical Engineering where the student likes to acquire specialized skills. The student shall prepare the duly certified report of project work in standard format for satisfactory completion of the work by the concerned guide and head of the Department/Institute.

Guidelines for term work assessment:

- Group Size: The student shall carry the project work individually or by a group of students. Maximum group size shall be 4 students. Projects selected should meet and contribute towards the needs of the industry and society.
- Selection and approval of topic: Topic should be related to real life application in the field of Chemical engineering.
- The topic may be based on: Investigation of the latest development in a specific field of Chemical engineering, The investigation of practical problem in manufacture and / working model of Chemical engineering equipment/ Software based projects related to Modelling, Simulation, Material Processing, solving real time engineering problems faced by industries etc. with the justification for techniques used / any topic in the field of Chemical engineering may be allowed.
- Interdisciplinary projects should be encouraged. The examination of Interdisciplinary projects shall be conducted independently in respective departments.

WALES OF THE STATE OF THE STATE

K. K. Wagh Institute of Engineering Education and Research, Nashik

- The term work assessment of Project Phase I shall be based on Innovative Idea of selected project, literature survey, depth of understanding, applications, individual contributions, progress review, presentation, project report, timely completion of work.
- The department should prepare project planner and should follow accordingly.
- Progress reviews should be conducted periodically by forming evaluation committee at department level.
- The project report must undergo by plagiarism check and the similarity index must be less than 15%. The plagiarism report should be included in the project report.
- A certified copy of report is required to be presented to evaluation committee at the time of examination.