

K.K.Wagh Institute of Engineering Education and Research, Nashik

Curriculum TY B. Tech(2023 Pattern)

Electronics and Telecommunication Engineering w.e.f. AY 2025-2026

	T.Y. B.Tech Electronics and Tele-Communication Engineering														
	SEM-V														
Course Couse		Title of Course		Teaching Scheme		Evaluation Scheme and Marks						Credits			
Code	Туре	The of Course	ТН	TU	PR	IN SEM	END SEM	CCE	TUT/ TW	PR/ OR	TOTAL	ТН	TU	PR	TOTA L
2302301	PCC	Electromagnetic Engineering	3	-	-	20	60	20			100	3		-	3
2302302	PCC	Digital Signal Processing	3	-	-	20	60	20			100	3		-	3
2302303	PCC	VLSI design and Technology	3	-	-	20	60	20			100	3		-	3
2302304	PCC	Lab work in Digital signal processing	-	-	2	-			25	25	50	-		1	1
2302305	PCC	Lab work in VLSI design and Technology	-	-	2	-			25	25	50	-		1	1
2302306	PEC	Elective 1	3	-	-	20	60	20			100	3		-	3
2302307	PEC	Lab work Elective 1	-	-	2	-			25	25	50	-		1	1
2302308	OE	OE3: Digital Business Management	2	-	-	-		50			50	2		-	2
2302309	MDM	MDM3: Cyber Security Tools Techniques and Counter Measures	3	-	-	20	60	20			100	3		-	3
		MDM3:Data Science using Python	3	-	-	20	60	20			100	3		-	3
2302310	RM	IPR	-	1	2	-			TUT-25, TW-25		50	-	1	1	2
		TOTAL	17	1	8	100	300	150	125	75	750	17	1	4	22

Elective Stream	Elective 1:
Communication	Elective -1 Software Defined Radio
Automation	Elective -1 Mechantronics
Embeded System	Elective -1 Interfacing Techniques
Artificial Intelligence	Elective -1 Foundation course in ML

		T.Y. B.Tech Electro	nics	an	d T	ele-Co	ommunic	atio	n Engin	eering									
	SEM-VI																		
Course	Couse	Title of Course				Title of Course		achi hem	<u> </u>		Evalua	tion S	cheme an	d Mark	S			Cre	edits
Code	Туре		ТН	TU	PR	INSEM	ENDSEM	CCE	TUT/TW	PR/OR	TOTAL	тн	TU	PR	TOTAL				
2302311	PCC	Embedded Systems	3	-	-	20	60	20	-	-	100	3	I	-	3				
2302312	PCC	Power Electronics	3	-	-	20	60	20	-	-	100	3	I	-	3				
2302313	PCC	Lab work in Embedded systems and Power Electronics	-	-	2	-	-	-	25	25	100	-	-	1	1				
2302314	PEC	Elective 2	3	-	-	20	60	20	-	-	50	3	-	-	3				
2302315	PEC	Elective 3	3	-	-	20	60	20	-	-	100	3	-	-	3				
2302316	PEC	Lab work Elective-2	-	-	2	-	-	-	25	25	100	-	-	1	1				
2302317	MDM	<u>MDM 4</u>	3	-	-	20	60	20	-	-	50	3	-	-	3				
2302318	OE	<u>OE 4</u>	2	-	-	-	-	50	-	-	50	2	-	-	2				
2302319	VSEC	Web Design	-	1	2	_	-	-	25	25	50	-	1	1	2				
2302320	CEP	Project Phase-1	-	-	2	_	-	-	50	-	50	-	-	1	1				
		TOTAL	17	1	8	100	300	150	125	75	750	17	1	4	22				

Elective Stream	Elective-2	Elective Stream	Elective-3
Communication	Microwave Engineering	Signal Processing	Advanced DSP
Automation	Process Instrumentation	Advanced VLSI Design	FPGA Based System Design
Embeded System	Advanced Processor	Recent Trends	Circular economy
Artificial Intelligence	Neural network and Fuzzy Control	E-Mobility	Automotive Electronics

		Tech. Pattern 2022 S	Semester: V			
	2302301	l: Electromagnetics E	ngineering			
	ng Scheme:	Credit Scheme:	Examination S			
Theory	v :03 hrs/week	03	Continuous Co Evaluation: 20	-		
			InSem Exam:			
			EndSem Exan			
Prereq	uisite Courses, if any: A	pplied Physics, Applie				
Compa	nion course, if any: Nil					
Course	e Objectives:					
1. To	study basic electrostatic	and magnetostatic laws	s and theorems.			
	elearn Maxwell's equatio					
	make the students able to					
4. T	o introduce the students	to transmission lines	and propagation	of uniform plane		
	aves.					
	make the students aware					
Course	Outcomes: On completi		nts will be able to-			
		Course Outcomes		Bloom's Level		
CO1	Study electrostatic fie	eld parameters and the	ir distributions in			
	different media and A	Apply it to solve the pr	oblems related to	2 - Understand		
	the electrostatic field.					
CO2		ield parameters and the				
		Apply it to solve the pr	oblems related to	2 - Understand		
	the electrostatic field.					
CO3	-	omagnetic problem a	and solve using	3 - Apply		
	Maxwell's equations.					
GO (• •	lated to transmission 1	ines and uniform	4 - Analyze		
CO4	plane wave propagation		1			
CO5	Elaborate the basic co	ncepts of microwaves a		2 - Understand		
TT •4	F 1	COURSE CONTENT		COs Manarad		
Unit T	Electrostatics		(08 hrs)	COs Mapped -		
I				CO1		
	b's Law & Electric Field	•				
	, Electric potential, Relat					
Laplace	's equation, Application o	f Poisson's and Laplac	ce's equations, Bou	undary Condition.		
Unit	Unit Magnetostatics (08 hrs) COs Mapped					
II				- CO2		
Biot-Sa	vart's Law, Ampere's Cir	cuital Law magnetic fl	ux density Magn	etic notentials		
	ions of Biot-savart's law a			1		
	etic field, Magnetic boun	1	a on mugnetie i Ot	entiun, 1 01005 uuc		
0		•		<u> </u>		
Unit	Time Varying Fields &	k Maxwell's	(06 hrs)	COs Mapped –		
III	Equations			CO3		

Faraday's Law, Transformer and Motional Electromotive Forces, Displacement Current, Maxwell's Equations in Point Form and Integral Form, Time-Varying Potentials, Time Harmonic Fields, Maxwell's Equations in Phasor Form.

Unit	Transmission Lines and Uniform Plane	(06 hrs)	COs Mapped –
IV	Waves		CO4

Introduction, Transmission Line parameters, Propagation constant, Characteristic Impedance, Reflection Coefficient, VSWR, Transmission line equation Lossless and Distortion less line, Wave Equation, Wave Propagation in Free Space and Good Conductors, Skin Depth, Electromagnetic Power and Poynting Theorem

Unit V	Antennas	(08 hrs)	COs Mapped – CO5
V			005

Microwave Frequency Bands, Advantages and Applications of Microwaves, Fundamental Equation for Free Space Propagation, Introduction to Antenna, Types of Antenna, Radiation Mechanism, Antenna Terminology: Radiation Pattern, Radiation Power Density, Radiation Intensity, Directivity, Gain, Antenna Efficiency.

Case study Antenna design, (Self study radiation Hazards)

Text Books

1. Principles of Electromagnetics, Mathew N. O. Sadiku, Oxford University Press Inc.

2. Networks, Lines and Fields, J. D. Ryder, PHI

3. Antenna & Wave Propagation, K. D. Prasad, Satya Prakashan, New Delhi

4. Microwave and Radar Engineering, M. Kulkarni, Umesh Publications

5. Antenna Theory - Analysis and Design, C. A. Balanis, John Wiley

Reference Books

1. Engineering Electromagnetics, William H. Hayt and John A. Buck, Tata McGraw Hill

2. Electromagnetic Waves and Radiating Systems, Jordan and Balmain, PHI

3. Microwave Engineering, David M. Pozar, Wiley

				Strengt	h of C	D-PO N	Aapping	g				
						PO	С					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-

(Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10					
2	Performance in Unit Tests (5 tests, one on each unit)	10					
	Total	20					

	230.	0 0		
Teachin	g Scheme:	Credit Scheme:	Examination Sch	eme:
Theory	:03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks	
Prerequi	site Courses: - Engineering	g Mathematics III		
Compan	ion course, if any: Lab wo	rk in DSP and CS		
1 10 1*	stroduce students with trans		screte time signals a	
5. To d	ntroduce students with trans esign IIR and FIR filters.	sforms for analysis usin	g Fast Fourier Transf	
5. To d	esign IIR and FIR filters. Outcomes: On completion	sforms for analysis usin	g Fast Fourier Transf	
5. To d	esign IIR and FIR filters. Outcomes: On completion	of the course, students Course Outcomes cal description and repro	g Fast Fourier Transf will be able to– esentation of	form
5. To d	 Outcomes: On completion Understand mathematic continuous and discrete to Develop input output rel and understand the con 	of the course, students Course Outcomes cal description and repro- time signals and system lationship for linear shift	g Fast Fourier Transf will be able to– esentation of s. 't invariant system	form Bloom's Level
5. To d Course (CO1	 esign IIR and FIR filters. Outcomes: On completion Understand mathematic continuous and discrete Develop input output rel 	of the course, students Course Outcomes cal description and repro- time signals and system lationship for linear shift volution operator for co	g Fast Fourier Transf will be able to– esentation of s. it invariant system ontinuous and	Bloom's Level
5. To d Course CO1 CO2	 esign IIR and FIR filters. Outcomes: On completion Understand mathematic continuous and discrete to Develop input output rel and understand the con discrete time system Analyze discrete time si 	of the course, students Course Outcomes cal description and repro- time signals and system lationship for linear shift volution operator for co- gnals and systems using	g Fast Fourier Transf will be able to– esentation of s. it invariant system ontinuous and g Discrete Fourier	Bloom's Level 2-Understand 3- Apply
5. To d Course CO1 CO2 CO3	 esign IIR and FIR filters. Outcomes: On completion Understand mathematic continuous and discrete to Develop input output rel and understand the con discrete time system Analyze discrete time si transforms. 	of the course, students Course Outcomes cal description and repro- time signals and system lationship for linear shift volution operator for co- gnals and systems using linear filtering of signal	g Fast Fourier Transf will be able to– esentation of <u>s.</u> it invariant system ontinuous and g Discrete Fourier s.	Bloom's Level 2-Understand 3- Apply 4 -Analyze
5. To d Course (CO1 CO2 CO3 CO4	 esign IIR and FIR filters. Outcomes: On completion Understand mathematic continuous and discrete to Develop input output rel and understand the con discrete time system Analyze discrete time si transforms. Develop algorithms for lage 	of the course, students Course Outcomes cal description and repro- time signals and system lationship for linear shift volution operator for co- gnals and systems using linear filtering of signal	g Fast Fourier Transf will be able to— esentation of <u>s.</u> it invariant system ontinuous and g Discrete Fourier s. ters	Bloom's Level2-Understand3- Apply4 -Analyze3- Apply

periodic and non-periodic, deterministic and non-deterministic, energy and power.

Elementary signals used for testing: reasons for using standard test signals, exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc.

Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding.

Unit	Representation of LTI systems in time domain:	(08 hrs+	COs Mapped
II		2hrsTutorial)	CO2

Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-

causal, static and dynamic, stable and unstable, invertible.

System modeling: Input-output relation, definition of impulse response, convolution integral, computation of convolution integral using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Properties of convolution. System properties in terms of impulse response, step response in terms of impulse response.

Unit	Basics of DSP and Discrete Fourier Transform	(08 hrs+	COs Mapped
III		2hrsTutorial)	CO3

Sampling, Basic elements of DSP and its requirements, advantages of Digital over Analog signal processing. mapping between analog frequencies to digital frequency, DTFT, Definition, Frequency domain sampling, DFT, Properties of DFT, circular convolution, linear convolution, Computation of linear convolution using circular convolution, Linear filtering using overlap add and overlap save method.

Unit	Fast Fourier Transform	(08 hrs+	COs Mapped
IV		2hrsTutorial)	CO4,

FFT, decimation in time and decimation in frequency using Radix-2 FFT algorithm, Comparison between finding DFT of signals using direct method and using FFT algorithm. In- place computation and memory requirement. Goertzel and Chirp-Z algorithm.

Unit V	IIR and FIR filter design	(09 hrs +	COs Mapped
		2hrsTutorial)	CO5,

Design of IIR filters from analog filters.IIR filters design by impulse invariance method, Bilinear transformation method, warping effect. Characteristics of Butterworth filters, Chebyshev filters and elliptic filters, Ideal filter requirements, Gibbs phenomenon, windowing techniques, characteristics and comparison of different window functions, Design of linear phase FIR filter using windows..

TextBooks

Simon Haykins and Barry Van Veen, "Signals and Systems", Wiley India, 2 nd Edition.
 John G. Proakis" Digital Signal Processing: Principles", Pearson publication

Reference Books

1. A. Nagoor Kanni ``Signals and Systems", McGraw Hill,

2. Dr. Shaila Apte, "Digital Signal Processing" Wiley India Publication

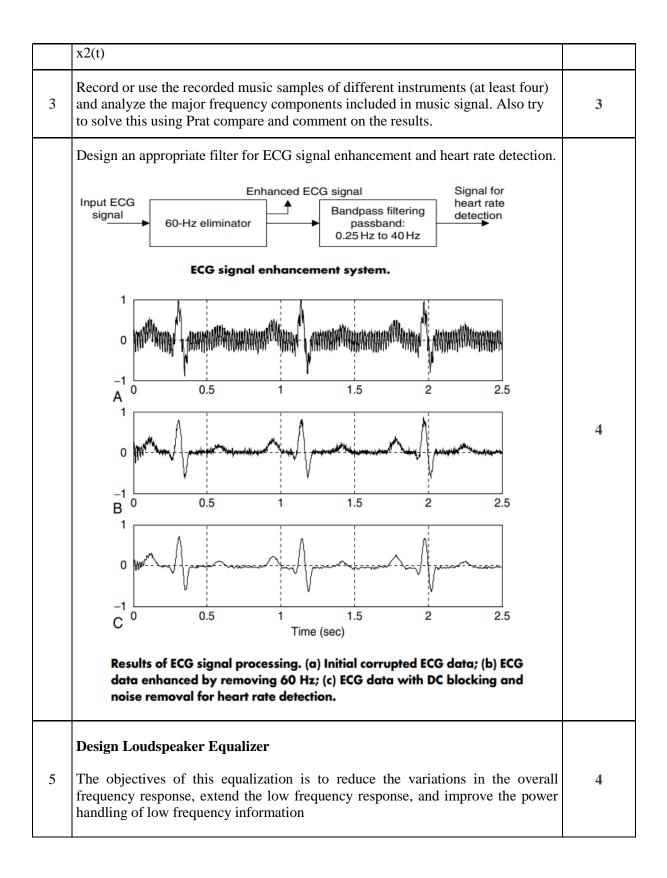
	Strength of CO-PO Mapping											
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	-	3	-	-	-	-	-	-	-
CO2	3	3	-	-	3	-	-	-	-	-	-	-
CO3	3	3	-	-	3	-	-	-	-	-	-	-
CO4	3	3	-	-	3	-	-	-	-	-	-	-
CO5	3	3	3	-	3	-	-	-	-	-	-	-

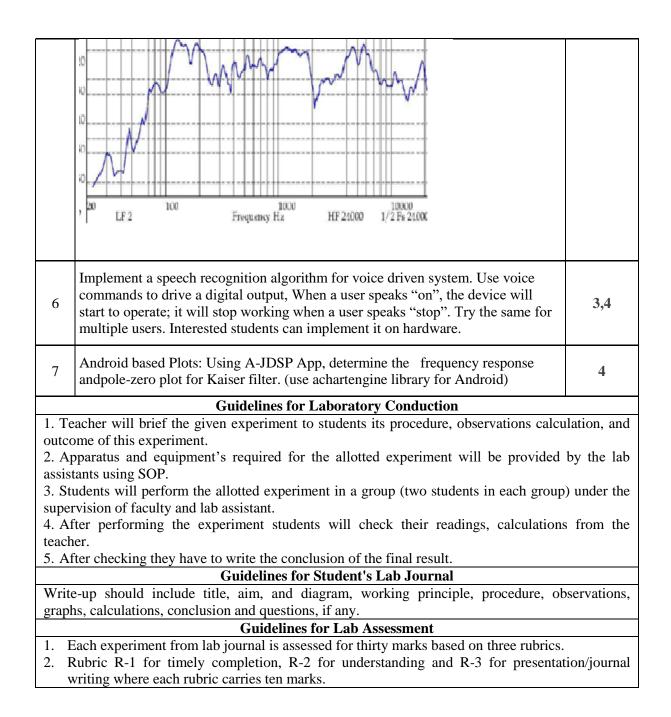
	Guidelines for Continuous Comprehensive Evaluation of Theory Course	
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted

1	Assignments on each unit	10
2	Tests on each unit	10

	Т. Ү. В.	Tech. Pattern 2023	Semester: V				
	230230	3: VLSI Design and '	Technology				
Teachir	ng Scheme:	Credit Scheme:	Examination S	Scheme:			
•	Theory :03 hrs/week03Continuous ComprehensivePractical : 02 hrs/week01InSem Exam: 20MarksEndSem Exam: 60MarksPractical Exam: 50 Marks						
Prerequ	uisite Courses, if any: -	Digital System Design	n using HDL				
Compa	nion course, if any: Lat	work in VLSI Design	and Technology				
	Objectives:						
	To Understand the archite		ita				
	To implement combination To get the knowledge about	1					
	To Understand the conce	1 1					
	To Get an Idea of Testabl		L				
	Outcomes: On complet	· · · ·	ents will be able to	0—			
		Course Outcomes		Bloom's Level			
CO1	Understand the basic a	architecture of various	PLDs	2- Understanding			
CO2	Explain the role of Ve	rilog in digital system	design	2- Explain			
CO3	Develop effective HD digital circuit with HD PLDs	0 0	0	3,6- Design			
CO4	Design CMOS circuits			4 -Analyze			
	Implement subsystem			2 4			
CO5	Apply knowledge of c design	nip level issues, faults	s and testability in	3- Apply			
		COURSE CONTEN	VTS				
Unit I	PLD Architectures an	d applications	(06hrs)	COs Mapped - CO1			
Study of	Programmable Logic D	evices (PROM, PAL, 1	PLA) and compar				
Program	mable Devices: Various	families, Features, Sp	ecifications, CPLI	O Architecture			
	ions, Field Programmab	-		-			
	rchitecture Applications FPGA Devices	, Implementing function	ons in PLA, PAL	and FPGA, Study			
Unit II	Introduction to Verilo	og HDL	(08hrs)	COs Mapped - CO2			
	w of Digital Design with	Verilog HDL, Hierard	chical Modelling (
	s, Modules and ports, In	0	Ŭ	T .			
Modellin	· • •	- ,	- •				

Unit III	Desi	gn Eler	nents in	Veril	og			(08h)	rs)	COs M CO3	Ларре	d −
Dataflo	w Mod	lelling,	Behavio	ural M	Iodelli	ng, Sw	itch leve	el Mode	lling. Ta		functi	ons,
Verilog	g Test b	bench				-			-			
Unit IV	CM	OS Log	gic Desi	gn				(07h)	rs)	COs N CO4	Ларре	e d –
CMOS	Inverte	er and D	DC trans	fer Ch	aracter	istics,	nverter	with cap	oacitive	load and	d its ef	fects,
								ational c				
, Seque	ntial ci	rcuit de	sign usi	ng CM	IOS					-	•	
Transr			example				ional ci	rcuit.				
Unit	Digi	tal Desi	ign Issu	es and	l Testa	bility		(07h)	rs)	COs N	Aappe	: d -
V										CO5		
Metasta	ability	and solu	itions, T	iming	consid	leratior	is and S	kew, Clo	ock disti	ribution	and jit	ter,
Supply	and gr	ound be	ounce, P	ower d	listribu	tion te	chnique	s and op	timizati	on, Nee	d of D	esign
for Tes	tability	(DFT),	DFT G	uidelir	ne, Tes	tability	, Types	of fault	and fau	lt model	ls, Haz	ards,
Test pa	ttern g	eneratio	n, Seque	ential o	circuit	test, Bı	uilt-in S	elf-Test,	JTAG	& Boun	dary so	can,
TAP C	ontroll	er.										
					T	ext Boo	oks					
			Digital sy		0	0						
-		·		•	2 (<i>U</i> /	', 4E,Pre				
		"Adva	nced FF	GA I	Design	Archit	ecture,	Impleme	entation	and Op	otimiza	tion",
Wile	y.											
						rence l						
				arris, ʻ	'CMOS	S VLSI	Design	: A Circ	cuit & S	System P	Perspec	tive",
		olication										
		,			0	•		nulation'		•	E Pres	S
								es", 3E,	Prentice	Hall		
		,	Digital I	0	· · ·				_	•		
				igital S	System	Design	n with F	PGA: In	plemen	tation Us	sing V	erilog
		', McGra		, ,	TD		C	TT'IL 4th	2002			
6. VHI	JL Pro	grammi	ng by I	Jougla	is.L.Pe	rry , M	cGraw-	Hill 4 th	2002			
				<u> </u>			0.14	•				
I				Stre	ngth o		O Map	oing				
ŀ	1	2		1	~		20	0	0	10	1	10
	1	2	3	4	5	6	7	8	9	10	1	12


						_	20					
	1	2	3	4	5	6	7	8	9	10	1	12
											1	
CO1	3	3	2	-	2	-	-	-	-	-	-	3
CO2	3	3	2	-	2	-	-	-	-	-	-	3
CO3	3	3	3	-	3	-	-	-	-	-	-	3
CO4	3	3	3	-	3	-	-	-	-	-	-	3
CO5	3	3	2	-	-	-	-	-	-	-	-	-


	Guidelines for Continuous Comprehensive Evaluation of Theo	ry Course
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Assignments on Unit-1, Unit-2, Unit-3 Unit-4, Unit-5	10
2	LMS Test on Each Unit	10
	Total	20

	T Y. B. Tech.Pattern 2023 Semester: V 2302304: Lab work in Digital Signal Processing								
Teachin	Teaching Scheme: Credit Scheme: Examination Scheme:								
Practica	Practical : 02 hrs/week 01 Continuous Comprehensive Practical Exam: 25 Marks TW: 25 Marks								
Prerequ	usite Courses, if any:	1	1						
Course	Objectives:								
2. T	 To develop practical skills in signal processing using MATLAB and mobile-based tools, including sampling, system response, spectral analysis, and filter design for real-time signals like audio and ECG. To design and implement signal processing applications such as equalizers, speech recognition systems, and sensor-based DSP on embedded and mobile platforms, bridging theory with real-world systems. Course Outcomes: On completion of the course, students will be able to-								
	Course C	-		Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)				
CO1	Students will be able to real-world signals using based tools, demonstrati sampling, filtering, and analysis.	MATLAB and moling an understanding	oile-	4-Analyze	3- Mechanism				
CO2	Students will be able to basic DSP applications equalizers, ECG enhance speech recognition inter mobile platforms.	such as audio rement systems, and		3-Appply	5-Complex Overt Response				

	List of Laboratory Experiments / Assignments								
Sr. No.	Laboratory Experiments / Assignments	CO Mapped							
1	To verify sampling theorem in MATLAB and Demonstrate the effects of aliasing arising from improper sampling	1							
2	Find the response of LTI system for unit step signal x1(t) and exponential signal	2							

	Т Ү. І	3. Tech.Pattern 202	23 Sei	mester: V	
	2302305: La	ab work in VLSI D	esign	and Technology	
Teachi	e:				
Practic	al : 02hrs/week	01		tinuous Compro	
				ctical Exam: 25	Marks
D			TW	: 25 Marks	
-	uisite Courses, if any: 1	DSD with HDL			
	Objectives:				
	ulate, test and verify any				
Course	Outcomes: On comple	tion of the course, s	tudent	s will be able to-	
	Course	Outcomes		Bloom's	Bloom's Level
				Level	(Psychomotor
				(Cognitive	domain)
001	Danalar and a second			domain)	
CO1	Develop programs usi hardwareproficiently b				
	for combinational &se		ing	4	4 (Mechanism)
	various modeling style	-	on of	+	
	programs in PLDs.	in an an appendent and	511 01		
CO2	Design CMOS circuits	s for specified			5 (Complete
	applications and Imple		ing	4	5 (Complex
	CMOS Technology.				Overt Response)
CO3	Apply knowledge of c	.		2	3 (Guided
	andtestability in design	n of Digital circuits.		-	Response)

	List of Laboratory Experiments / Assignments				
Sr. No.	Laboratory Experiments / Assignments	CO Mapped			
1	Implementation of Full Adder using all modeling styles	C01,CO2, CO3			
2	Design a lift controller for 4 floors building Assume suitable data. Also write test bench for it.	C01,CO2, CO3			
	Design a washing machine controller Assume suitable data. Also write test bench for it.				
3	(Operation: When start is pressed, goes through wash, spin, rinse, spin cycles. If "double rinse" is selected, an extra rinse and spin cycle is added.	C01,CO2, CO3			
	Details: Must fill the tub with water before washing or rinsing – output the signal "fill tub" to do this. A timer is provided that gives the appropriate amount of time for a wash, rinse, or spin				

	cycle.)	
4	Design a Traffic Light Controller, assume suitable data. Also write test bench for it. (A busy highway is intersected by a little used farm road. Detectors C sense the presence of cars waiting on the farm road ,with no car on farm road, light remain green in highway direction, if vehicle on farm road, highway lights go from Green to Yellow to Red, allowing the farm road lights to become green, these stay green only as long as a farm road car is detected but never longer than a set interval, when these are met, farm lights transition from Green to Yellow to Red, allowing highway to return to green, even if farm road vehicles are waiting, highway gets at least a set interval as green)	C01,CO2, CO3
5	To simulate Logic Gates using CMOS	C04
6	To simulate Combinational/ Sequential circuit Using Conventional method and Transmission Gates(TG)	C04
7	To simulate CMOS combinational logic for minimum four variable inputs	C04
8	Simulate Stuck at fault model of given function	C05
	Guidelines for Laboratory Conduction	
calc 2. App the 3. Stud und 4. Afte the 5. Afte	cher will brief the given experiment to students its procedure, culation, and outcome of this experiment. paratus and equipment's required for the allotted experiment will be lab assistants using SOP. dents will perform the allotted experiment in a group (two students in ler the supervision of faculty and lab assistant. er performing the experiment students will check their readings, calcu- teacher. er checking they have to write the conclusion of the final result. <u>Guidelines for Student's Lab Journal</u> -up should include title, aim, and diagram, working principle	provided by each group) ulations from
	vations, graphs, calculations, conclusion and questions, if any.	, procedure,
	Guidelines for Lab Assessment	
Rubric	experiment from lab journal is assessed for thirty marks based on three c R-1 for timely completion, R-2 for understanding an attaion/journal writing where each rubric carries ten marks.	

	T. Y. B.	Tech.Pattern 2023 S	emester: V	
	23023	06A: Software Defin	ed Radio	
Teachin	g Scheme:	Credit Scheme:	Examination S	Scheme:
Theory	:03 hrs/week	03	Continuous Co Evaluation: 20 InSem Exam: EndSem Exan) Marks 20 Marks
Prerequ	i site Courses, if any : Ar	alog and DigitalCom	munication	
Compar	nion course, if any: Lab	work in Software Def	ined Radio	
1. To 2. To 3. To	Objectives: o understand how SDR pl o understand Digital Mod o understand the concept of Outcomes: On completion	ulation Techniques for of Cognitive Radio ar	or SDR. Id Spectrum sharin	ng
	С	ourse Outcomes		Bloom's Level
CO1	Discuss digital modula	tion techniques for SI	DR	2- Understand
CO2	Understand RF implem	entation		2- Understand
CO3	Understand SDR Archi	tecture		2- Understand
CO4	Understand Cognitive 1	adio architecture		2- Understand
CO5	Explore the application	s of SDR		2- Understand
		COURSE CONTEN	TS	
Unit I	Digital communication for SDR/cognitive rad		(06 hrs)	COs Mapped - CO1
Distance M-ary Qu Probabili	nsmission ,Digital Modul between Signals , Decisi uadrature Amplitude Mod ty of Bit Error , Probabili techniques	on Rule , Power Effic lulation Probability of	iency, M-ary Pha f Bit Error, Deriv	se Shift Keying, vation of
Unit II	Introduction to SDR a	and RF	(06 hrs)	COs Mapped - CO2
Introduc Radio fr Front Er ,LNA ,I	Implementation etion to SDR required har requency spectrum and re nd topologies, Flexibility mage reject filters, IF fil- r issues, Reconfigurable of	gulation Purpose of R of RF chain with soft ters, RF Mixers Loca	CF front End, Dyn ware radio, Duple l Oscillator , AGC	re platform, amic Range ,RF receiv exer ,Diplexer ,RF filter

Unit III	SDR Architecture	(06 hrs)	COs Mapped – CO3
Architec	ture of SDR-Open Architecture, Software Com	munication Arch	itecture,
	tter Receiver Homodyne/heterodyne architectur		
DAC/AI	DC Noise Budget, ADC and DAC Distortion, R	ole of FPGA/CP	U/GPU in SDR,
Applicat	ions of FPGA in SDR, Design Principles using	FPGA, Tradeo	ffs in using DSP,
FPGA an	nd ASIC, Power Management Issues in DSP, A	SIC, FPGA	
Unit IV	Cognitive Radio Architecture	(06 hrs)	COs Mapped – CO4
Cognitiv	e Radio Architecture, The Technologies Requir	ed : Radio Flexil	oility and
Capabili	ty, Available Technologies for Cognitive Radio	s, Cognitive Geo	-location
	ions, Update of CR-Specific Technologies, Spe	ctrum Sensing in	CR, Spectrum
Awarene	ess and Access Considerations, CR Network,		
OFDM N	Modulator and Demodulator, Benefits of OFDM		1
Unit V	Applications of SDR	(06 hrs)	COs Mapped – CO5
Applicat	ions of SDR in Advance Communication S	ystem-Case Stud	dy, Challenges and
Issues,	Implementation, Parameter Estimation - Env	vironment, Locat	tion, other factors,
Vertical	Handoff, Network Interoperability. Case Stud	y:1)CR for Put	olic Safety -PSCR,
Modes of	of PSCR, Architecture of PSCR 2)Beagle box	ard based SDR	3)Embedded PCSR
using GN			
	Text Books		
1. Jeffr	ey.H.Reed ,"Software Radio : A Modern A	Approach to Ra	dio Engineering ",
	son, LPE	11	8 8 9
2. Alex	ander M. Wyglinski, Worcester Maziar Nekov	vee., Thomas Ho	u, "Cognitive Radio
	munications and Networks Principles and Prac		
	Reference Books		
1. Mar	kus Dillinger, KambizMadani, Nancy Alon	istioti, "Softwar	e Defined Radio :
	nitectures, Systems and Functions", Wiley		
2. Ton	y .J. Rouphael , "RF and DSP for SDR", Elsevi	er Newness Press	s ,2008
3. SDI	R –Handbook, 8th Edition, PENTEK		
4. Bru	ce a. Fette, "Cognitive Radio Technology, New	vness", Elsevier	
	Strength of CO-PO Mag	oping	

				St	rength	of CC)-PO N	Ларріг	ng					
						Р	0						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	3
CO3	3	3	-	-	-	-	-	-	-	-	-	-	-	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	-	3
CO5	3	3	-	-	-	-	-	-	-	-	-	-	-	3
G	Juideli	ines fo	or Con	tinuo	us Cor	npreh	ensive	e Eval	uation	of Th	eory (Course	è	
Sr.	Ca	mnon	onte f	or Co	ntinuo		mnrol	hongiy		luatio	•	Marks		
No.	Col	mpon	ents r		nunuu	us Co	mpre	liensiv	e Eva	iuatioi	1	All	otted	l
1	Assig	gnmen	ts on I	Unit-1	, Unit-	2, Uni	t-3, U	nit-4 a	nd Un	it-5			10	
2	Perf	orman	ice in U	Unit To	ests (5	5 tests,	one o	n each	unit)				10	
										Tot	al		20	

T. Y. B. Tech. Pattern 2023 Semester: V						
	2302306B : Mechati	conics				
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Theory :03 hrs/week	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks					
-		ineering, Mechanical Processes & rical Circuits & Machines, Basics of				
Companion course, if any:	-Lab work in Mechatron	ics Mechatronics				
Course Objectives: 1. To introduce basics of 2. To expose different se 3. To explain designing of 4. To explain designing of	nsors & actuators. of hydraulic circuit.					
 To explain designing of pneumatic circuit. To explore applications of mechatronics. 						

	Course Outcomes		Bloom's Level
CO1	Explain fundamentals of mechatronics.		2
CO2	Describe the operation of sensors and actuators.		2
CO3	Explain components of hydraulic circuit and its ap	plications	2
CO4	Explain components of pneumatic circuit and its a	2	
CO5	Illustrate applications of mechatronics.		2
	COURSE CONTENTS		
Unit I	Introducing Mechatronics	(08 hrs)	COs Mapped - CO1
			001

Transducers: Types, Characteristics Parameters Displacement Sensors, Position Sensors, Proximity Sensors, Velocity Sensors, Motion Sensors, Force Sensors, Acceleration Sensors,

Temperat	nsors, Fluid Pressure Sensors Liquid Flow Sensors, are Sensors, Light Sensors, Digital Transducer, Sele actuator, single acting and double acting cylinder.		
Unit III	Hydraulic Systems	(06 hrs)	COs Mapped - CO3
	ciples of Hydraulics, Hydraulic Pumps, Hydraulic A ccumulators, Directional Control Valves, Design of		
Unit IV	Pneumatic Systems	(07 hrs)	COs Mapped - CO4
Valves, P	ciples, Compressors, Dryers, and Tanks, Pressure R neumatic Actuators, Comparison of Hydraulic & Pn alves, Design of simple pneumatic circuit	0	
Unit V	Case Studies of Mechatronics systems	(07 hrs)	COs Mapped – CO5
Car Park S Antilock I	n., Illustrative examples: Boat Autopilot, High-Spee System, Coin Counter, Engine Management System Brake System Control, Timed Switch, Pick-and-plac e and others.	, Autonomous	s Mobile System,
	Text Books		
	chatronics Handbook, R H Bishop, CRC Press, Edi ronics: Integrated Mechanical Electronic Systems		araghavan, M.S.
Balasuı 3. Moderr	ndaram K. P. Ramachandran, Wiley, First Edition Control Technology, Christopher T. Kilian, Dela	mar Thomson	n Learning, First
Balasu	Control Technology, Christopher T. Kilian, Del	mar Thomsor	n Learning, First

		Strength of CO-PO/PSO Mapping												
		PO								PS	50			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	2	2	-	3	-	-	-	-	-	-	-	3	-
CO4	3	2	2	-	3	-	-	-	-	-	-	-	3	-
CO5	3	-	-	-	-	_	-	-	_	-	-	-	3	-

Guidelines for Continuous Comprehensive Evaluation of Theory Course

Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10
2	Performance in Unit Tests (5 tests, one on each unit)	10
	Total	20

	Т. Ү. В.	Tech. Pattern 2023	Semester: I			
	2302	306C: Interfacing tec	hniques			
Teachin	ng Scheme:	Credit Scheme:	Examination Sc	heme:		
Theory	Theory :03 hrs/week 03 Continuous Compresse Evaluation: 20 Mar Evaluation: 20 Mar InSem Exam: 20 Mar InSem Exam: 20 Mar Prerequisite Courses, if any: Microcontrollers EndSem Exam: 60 I					
Prerequ	isite Courses, if any: M	icrocontrollers				
Compan	iion course, if any: Lab	work in Interfacing Te	chniques			
Course	Objectives:					
 To exp serial of To dev interfa DAC, To ga comm 	nisms and apply this know plore the fundamentals of communication protocols velop an understanding of cing, data transfer metho and stepper motors. ain hands-on experien unication technologies 1 cted IoT systems.	of serial communications including RS232, RS of peripheral interfacing ods, and interfacing of ce with Arduino for	on and gain familia 485, I2C, and USB. ag techniques such peripherals like LC or sensor interfac	rity with standard as memory vs I/O CD, keypad, ADC, ing and explore		
Course	Outcomes: On completi	ion of the course, stude	nts will be able to-			
		Course Outcomes		Bloom's Level		
CO1	and logic assembly ins	crocontroller architectu structions and C Data t	ypes.	Understand		
CO2	configure timers, inter	mming using TRIS reg rupts, and INTCON re dware interfacing such ontroller.	gister and	Apply		
CO3		cation protocols for eff al communication usin		Apply		
CO4	and stepper motors, an	niques for LCD, keypa ad understand memory l data transfer methods	vs I/O	Apply		
CO5		n Arduino for sensors a les, and compare Zigbe		Apply		

	technologies in IoT systems, including sensor	r classification	
	and cloud platform integration.		
	COURSE CONTEN	TS	
Unit	PIC Microcontroller Architecture and	(07 hrs)	COs Mapped -
Ι	Assembly Programming		CO1
PIC arc	hitecture, Introduction to PIC assembly program	ming, Arithmetic	and logic
	ions, ,Addressing Modes, Oscillator configuratio	ons of PIC, Reset	circuits of PIC
	ata types for PIC 18	ſ	1
Unit II	PIC I/O & Timers	(07 hrs)	COs Mapped - CO2
PIC I/C	Port Programming ,TRIS Register, Timers basic	cs, Interrupts in P	IC, INTCON,
Introdu	ction to interfacing ,LED Interfacing		-
Unit	Serial Communication	(08 hrs)	COs Mapped –
III			CO3
	of serial communication, Basics of Serial Comm	unication Protoc	ol: Study of RS232,
	, I2C,USB		I
Unit IV	Peripheral Interfacing	(07 hrs)	COs Mapped – CO4
Memor	y Interfacing vs I/O Interfacing, Introduction to	Parallel and Seria	al Interfacing, Data
Transfe	r Techniques-Polling, Interrupts, DMA, Block tr	ansfer and byte the	cansfer ,LCD
Interfac	ing, 4 X 4 Matrix Keypad, ADC, DAC interfac	ing, Stepper mot	or interfacing,
Unit	Interfacing in Embedded and IoT	(07 hrs)	COs Mapped –
V	Systems		CO5
	b- Interfacing with LEDs, buttons, sensors, Zigbe		
	latforms in IoT (Internet of Things), Introduction		Analog vs Digital
sensors	, Active vs Passive sensors, Interfacing of arduin	o with sensors	
	Text Books		
1. Embe	dded microcomputer systems: real time interfaci	ng (3 rd edition), J	onatham W.
Valvanc	edded microcomputer systems: real time interfaci	-	onatham W.
Valvano 2. Embe	edded microcomputer systems: real time interfaci o. edded system: An integrated approach, Lyla B.Da	ıs.	
Valvano 2. Embe 3. Introd	edded microcomputer systems: real time interfaci o. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy	ıs.	
Valvano 2. Embe 3. Introd	edded microcomputer systems: real time interfaci o. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia	ıs.	
Valvano 2. Embe 3. Introd Edward	edded microcomputer systems: real time interfaci b. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia Reference Books	as. estems approach(2 nd edition),
Valvano 2. Embe 3. Introd Edward	edded microcomputer systems: real time interfaci b. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia Reference Books bedded Systems Architecture - A Comprehensi	as. estems approach(2 nd edition),
Valvano 2. Embe 3. Introc Edward 1. Emb 200	edded microcomputer systems: real time interfaci b. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia Reference Books bedded Systems Architecture - A Comprehensi	as. estems approach(ive Guide- T. N	2 nd edition), oergaard (Newnes,
Valvano 2. Embe 3. Introc Edward 1. Emb 2000 2. Dr.	edded microcomputer systems: real time interfaci o. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia Reference Books bedded Systems Architecture - A Comprehensi 5) Ovidiu Vermesan, Dr. Peter Friess, "Internet of	as. ystems approach() ive Guide- T. N f Things: Conver	2 nd edition), oergaard (Newnes, ging Technologies
Valvano 2. Embe 3. Introd Edward 1. Emb 2000 2. Dr. for	edded microcomputer systems: real time interfaci b. edded system: An integrated approach, Lyla B.Da luction to embedded system: A cyber physical sy Ashford Lee and Sanjit Arunkumar Seshia Reference Books bedded Systems Architecture - A Comprehensi 5)	as. ystems approach() ive Guide- T. N f Things: Conver ems", River Pu	2 nd edition), oergaard (Newnes, ging Technologies blishers Series in

Strength of CO-PO/PSO Mapping (Sample):

Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is mapped.

Each Course Outcome addresses a sub-set of POs and PSOs to varying levels.

(Strengths: 1- Low, 2 – Medium, 3 - Strong)

		Strength of CO-PO/PSO Mapping												
		PO										PS	50	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3
CO5	3	3	3	3	-	-	-	-	-	-	-	-	3	3

(Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10				
2	Performance in Unit Tests (5 tests, one on each unit)	10				
	Total	20				

B. Tech. Pattern 2022 Semester: VII							
2302306D : Foundation course in ML							
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Theory :03 hrs/week	03	Continuous Comprehensive					
		Evaluation: 20 Marks					
		InSem Exam: 20 Marks					
		EndSem Exam: 60 Marks					
Prerequisite Courses, if	any:.Basic knowledge Prog	gramming (Python), and Data					
Structures.							
Companion course, if an	y:Lab work in Foundation	course in ML					
Course Objectives:	-						
1. Introduce core machine	learning concepts and varie	ous types of learning paradigms.					
2. Develop skills in data properformance.	reprocessing and feature en	gineering for improved model					
1							

- 3. Enable training and evaluation of ML models using suitable techniques and validation methods.
- 4. Apply unsupervised learning algorithms for clustering and dimensionality reduction.
- 5. Interpret model results using standard performance metrics for better decision-making.

Course	Course Outcomes: On completion of the course, students will be able to-					
	Course Outcomes	Bloom's Level				
CO1	Explain core ML concepts and differentiate between supervised, unsupervised, and reinforcement learning problems.	2-Understand				
CO2	CO2 Preprocess and engineer features from raw data to optimize 3-Apply model performance.					
CO3	Train and evaluate models using appropriate loss functions, regularization, and validation techniques.3-Apply					
CO4	Apply unsupervised learning algorithms like k-Means and PCA for clustering and dimensionality reduction.3-Apply					
CO5	CO5 Evaluate and interpret model performance using metrics like accuracy, precision, recall, ROC, and AUC. 4-Analyze					
COURSE CONTENTS						
Unit IIntroduction to Machine Learning and Types of LearningCOs Mapped - CO1						
History and Evolution of Machine Learning Applications of ML in Real-world Domains Machine Learning Lifecycle Types of Learning: Supervised, Unsupervised, Semi-						

Unit II	ut, K-Fold) Data Preprocessing and Feature Engineering	COs Mapped - CO2
Underst	anding ML Datasets: Attributes, Labels, Features Data Preprocess	ing: Handling
Missing	Values Feature Scaling: Normalization & Standardization Encod	ing: One-Hot,
Label E	ncoding Feature Engineering Basics Feature Selection Techniques	s Dimensionality
Reduction	on: Concept of Subset Selection Principal Component Analysis (F	CA) Entropy,
Informa	tion Gain, Gini Index	
Unit III	Supervised Learning Techniques	COs Mapped – CO3
Regress	ion: Linear Regression: Hypothesis, Cost Function, Least Squares	, Gradient Descen
Perform	ance Metrics: MSE, MAE, R ² Classification: Logistic Regression	k-Nearest
Neighbo	ors (k-NN) Naïve Bayes Classifier Support Vector Machines (SVI	A): Maximal
	Classifier, Kernel Trick, Decision Trees for Classification and Re	
-	ction to Random Forests Binary vs Multiclass Classification (One-	-
One)		
Unit IV	Unsupervised Learning Techniques	COs Mapped – CO4
Differen	ce Between Supervised and Unsupervised Learning Applications	of Unsupervised
Learning	g Clustering Algorithms: k-Means Clustering Hierarchical Cluster	ring,
D.		at Sagmantation
Dimensi	ionality Reduction using PCA and Applications, Use Cases: Mark	et Segmentation,
	Compression, etc.	et Segmentation,
		COs Mapped – CO5
Image C Unit V	Compression, etc.	COs Mapped – CO5
Image C Unit V Model E	Compression, etc. Model Evaluation and Optimization	COs Mapped – CO5 ion Matrix ROC
Image C Unit V Model E and AU	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus	COs Mapped – CO5 ion Matrix ROC larization
Image C Unit V Model E and AU Techniq	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regu	COs Mapped – CO5 ion Matrix ROC larization K-Fold, Stratified
Image C Unit V Model E and AU Techniq Hyperpa	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regu ues: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: I	COs Mapped – CO5 ion Matrix ROC larization K-Fold, Stratified
Image C Unit V Model E and AU Techniq Hyperpa	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulations ues: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Introduction VC Dimeter Tuning: Grid Search – Conceptual Introduction VC Dimeter	COs Mapped – CO5 ion Matrix ROC larization K-Fold, Stratified
Image C Unit V Model E and AU Techniq Hyperpa General	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Introduction VC Dimeter Tuning: Grid Search – Conceptual Introducting Se	COs Mapped – CO5 ion Matrix ROC larization K-Fold, Stratified
Image C Unit V Model E and AU Techniq Hyperpa Generali	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Introduction VC Dimeter Tuning: Grid Search – Conceptual Introducting VC	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and
Image C Unit V Model E and AU Techniq Hyperpa Generali	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Introduction VC Dimension (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tensor	COs Mapped – CO5 ion Matrix ROC larization K-Fold, Stratified ension and
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géror	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Introduction VC Dimension (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tensor	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géror 3 Russ	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Barameter Tuning: Grid Search – Conceptual Introduction VC Dimension (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tenson n.	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géror 3 Russ editio	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regules: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: I arameter Tuning: Grid Search – Conceptual Introduction VC Dimitization (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tensor h. sell, S. and Norvig, P. 2015. Artificial Intelligence - A Modern Approximation	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and rFlow – Aurélien oproach, 3rd
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géror 3 Russ editio 4. J. Ga	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulues: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: I arameter Tuning: Grid Search – Conceptual Introduction VC Dimization (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tenson h. sell, S. and Norvig, P. 2015. Artificial Intelligence - A Modern Apr, Prentice Hall	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and rFlow – Aurélien oproach, 3rd
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géron 3 Russ editio 4. J. Ga Intelli	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulues: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Intrameter Tuning: Grid Search – Conceptual Introduction VC Dimensization (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tenson n. Sell, S. and Norvig, P. 2015. Artificial Intelligence - A Modern April Prentice Hall briel, Artificial Intelligence: Artificial Intelligence for Humans (A	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and rFlow – Aurélien oproach, 3rd
Image C Unit V Model E and AU Techniq Hyperpa Generali 1. Deep 2. Hand Géror 3 Russ editio 4. J. Ga Intelli editio	Compression, etc. Model Evaluation and Optimization Evaluation Metrics: Accuracy, Precision, Recall, F1-Score Confus C Curve Overfitting and Underfitting: Causes and Solutions Regulates: L1 (Lasso), L2 (Ridge) – Basic Concepts Cross-Validation: Interameter Tuning: Grid Search – Conceptual Introduction VC Dimitization (Introductory) Text Books Learning – Ian Goodfellow, Yoshua Bengio, Aaron Courville. Is-On Machine Learning with Scikit-Learn, Keras, and Tensor n. sell, S. and Norvig, P. 2015. Artificial Intelligence - A Modern Apr n, Prentice Hall briel, Artificial Intelligence: Artificial Intelligence for Humans (Agence, Machine Learning), Create Space Independent Publishing	COs Mapped – CO5 ion Matrix ROC larization X-Fold, Stratified ension and rFlow – Aurélien oproach, 3rd artificial Platform, First

Reference Books

- 1. Learning Spark Jules Damji, Matei Zaharia.
- 2. Natural Language Processing with Transformers Lewis Tunstall.
- 3. .Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning, Springer, ISBN 978-1-4614-7137-02.
- 4. Giuseppe Bonaccorso, "Machine Learning Algorithms", Packt Publishing Limited, ISBN10: 1785889621, ISBN-13: 978-1785889622 2.
- Tom Mitchell "Machine Learning" McGraw Hill Publication, ISBN :0070428077 9780070428072

	Strength of CO-PO Mapping PSO										PSO ping SO			
	1	1	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	3	-	-	-	-	-	3	-	-	-
CO2	3	3	-	-	3	-	-	-	-	-	3	-	-	-
CO3	3	3	-	-	3	-	-	-	-	-	3	-	3	3
CO4	3	3	-	-	3	-	-	-	-	-	3	-	3	3
CO5	3	3	3	-	3	-	-	3	-	3	3	-	3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10				
2	Performance in Unit Tests (5 tests, one on each unit)	10				
	Total	20				

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

T Y. B. Tech.Pattern 2023 Semester: v

2302307A: Lab work in Software Defined Radio

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical : 02hrs/week	01	Continuous Comprehensive
		Practical Exam: 25 Marks
		TW: 25 Marks

Prerequisite Courses, if any: Analog and DigitalCommunication

Course Objectives:

- 1. To understand how SDR platform provides easy access to wireless network system
- 2. To understand Digital Modulation Techniques for SDR.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level (Cognitive	Bloom's Level (Psychomotor domain)
CO1	Understand the fundamental principles of communication, including modulation techniques, transmission schemes, and spectrum analysis.	domain) 2- Understand	1-Imitation
CO2	Demonstrate the ability to set up and configure SDR hardware and software platforms for different applications.	3- Apply	3-Precision

	List of Laboratory Experiments				
Sr.	Laboratory Experiments	CO			
No.		Mapped			
1	SDR Hardware Setup: Setting up SDR hardware (e.g., RTL-SDR dongle) and software (e.g., GNU Radio).	CO1			
2	Design and implement an FM radio receiver using SDR hardware and software, including tuning, demodulation, and audio playback.	CO2			
3	Build a simple AM radio transmitter and receiver using SDR, exploring the principles of amplitude modulation.	CO2			
4	Develop a QAM modulation system for digital data transmission using SDR, investigating its advantages in high-speed communication.	CO2			
5	Design a satellite communication system using Binary Phase Shift Keying (BPSK) modulation with SDR, focusing on its applications in space communication.	CO2			
6	Design a Radio Frequency Identification (RFID) system using Frequency Shift Keying (FSK) modulation with SDR, exploring its applications in tracking and identification.	CO2			

7	Implement Quadrature Phase Shift Keying (QPSK) modulation for digital television broadcasting using SDR, exploring its role in modern TV standards.	CO2			
8	Design a Radio Frequency Identification (RFID) system using Frequency Shift Keying (FSK) modulation with SDR, exploring its applications in tracking and identification.	CO2			
	Guidelines for Laboratory Conduction				
calc 2. E assi 3. S und 4. A teac	 Teacher will brief the given experiment to students, its procedure, observations calculation, and outcome of this experiment. Equipment and kits required for the allotted experiment will be provided by the lab assistants using SOP. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistants. After performing the experiment students will check their readings, calculations from the teacher. After checking they have to write the conclusion of the final result. 				
	Guidelines for Student's Lab Journal				
	Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.				
	Guidelines for Termwork Assessment				
R2: R3: Tota	 R1: Timely completion of experiment (10 Marks) R2: Understanding of experiment (10 Marks) R3: Presentation / clarity of journal writing (10 Marks) Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of term work. 				

T. Y. B. Tech. Pattern 2023 Semester: V							
2302307B : Lab work in Mechatronics							
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Pr.: 2 Hrs / Week	01	Continuous Comprehensive Evaluation Practical : 25 Marks Term work: 25 Marks					
I /		neering, Mechanical Processes & ical Circuits & Machines, Basics of					
Companion course, if any:							
thermoelectric) for the r	neasurement of physical qua	sducers (resistive, capacitive, optical, ntities ectrical signals (voltage and current)					

- 2. To utilize a data acquisition system to measure electrical signals (voltage and current) from sensors and analyze the operation of basic electromechanical and fluid power systems, including position control and pneumatic circuits.
- 3. Evaluate different measurement techniques for flow and proximity sensing, and design and simulate basic fluid power circuits for specific applications.

Course	Outcomes: On completion of the course, students w	ill be able to-	
	Course Outcomes	Bloom's Level	Bloom's Level (Psychom otor domain)
CO1	Analyze the principles of operation and apply various transducers (strain gauge, capacitive, resistive, optical, thermoelectric) for the measurement of physical parameters like weight, liquid level, displacement, velocity, and temperature.	3- Applying	4- Manipulatio n
CO2	Design and implement basic data acquisition systems for measuring electrical quantities and understand the principles of flow and position control systems, including pneumatic and hydraulic circuits, and proximity sensors.	3- Applying	4- Manipulatio n

Sr.	List of Experiments									
No.	List of Experiments									
1.	Weight measurement using strain gauge.									
2.	Liquid level measurement using capacitive transducer.									
3.	Displacement measurement using sliding potentiometer.									
4.	sensor.									
5.	Temperature measurement using thermocouple / RTD.									
6.	To use data acquisition system for DC voltage & DC current measurement.									
7.	Flow measurement using rotameter & ultrasonic sensor.									
8.	Position control using servomechanism with photo electric pickup.									
9.	Design of pneumatic circuits.									
10.	Verify operation of proximity sensors.									
11.	Simulation of hydraulic / pneumatic circuits.									
	Guidelines for Laboratory Conduction									
1. Teac	her will brief the given experiment to students, its procedure, observations									
	tion, and outcome of this experiment.									
2. Equ	ipment and kits required for the allotted experiment will be provided by the lab									
assistar	nts using SOP.									
3. Stud	ents will perform the allotted experiment in a group (two students in each group)									
under t	he supervision of faculty and lab assistants.									
	r performing the experiment students will check their readings, calculations from the									
teacher										
5. Afte	er checking they have to write the conclusion of the final result.									
	Guidelines for Student's Lab Journal									
	up should include title, aim, and diagram, working principle, procedure,									
observa	ations, graphs, calculations, conclusion and questions, if any.									
	Guidelines for Termwork Assessment									
R1: Timel	y completion of experiment (10 Marks)									
	R2: Understanding of experiment (10 Marks)									
	ntation / clarity of journal writing (10 Marks)									
	narks for each experiment and average marks of all experiments will be converted arks of term work.									

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

T. Y. B. Tech. Pattern 2023 Semester: I										
2302307C: Lab work in Interfacing techniques										
Teachin	g Scheme:	Credit Scheme:	Examination S	Scheme:						
Practica	l : 02hrs/week	01	Practical: 25 Term work: 2							
Prerequ	isite Courses, if any: Mic	rocontrollers								
Course	Outcomes: On completion	of the course, students v	will be able to-							
	Course C	Bloom's	Psychomotor							
			Level	domain						
CO1	Apply knowledge of dig interface basic compone buttons, buzzers, relays, PIC18FXXXX microcor	Apply	6. Adaptation							
CO2	Apply programming skill peripheral devices like k and analog sensors using as ADC and timers in Pl	Apply	6. Adaptation							
CO3	Apply embedded system and control sensors and platform.	Apply	6. Adaptation							

	List of Laboratory Experiments / Assignments								
Sr. No	Laboratory Experiments / Assignments	CO Mapped							
1	Write a program to interface multiple LEDs with the PIC18FXXXX microcontroller to create lighting patterns used in applications like status indicators, home automation, and digital displays.	CO1							
2	Design a control system using a PIC microcontroller to simulate a basic security or automation alert mechanism. When Button 1 is pressed, it activates a relay (simulating a device), triggers a buzzer for audible alert, and initiates a forward LED chasing sequence to indicate system activation. When Button 2 is pressed, the relay and buzzer turn off, and the LEDs chase in reverse direction, signaling system deactivation. This application demonstrates user-triggered control for safety or automation scenarios.	CO1							
3	Develop a program to interface a 16x2 LCD with the PIC18FXXXX microcontroller to display system messages or real-time data.	CO1							
4	Develop a user input system by interfacing a 4x4 matrix keypad with the PIC18FXXXX microcontroller to capture numeric or command inputs. This setup is commonly used in applications such as digital door locks, menu-driven embedded systems, and user authentication panels where secure and efficient input handling is required.	CO2							

5	Design a waveform generation system using the PIC18FXXXX	CO2
	microcontroller to produce a square wave signal by configuring timers	
	with interrupts. This technique is essential in applications such as tone	
	generation, digital clock signals, pulse generation for motor control, or	
	triggering external circuits in timing-critical embedded systems	
6	Develop a data acquisition system using the PIC18FXXXX	CO2
	microcontroller by interfacing an analog sensor, such as a	
	potentiometer or LM35 temperature sensor, through the built-in ADC	
	module. This forms the core of applications like temperature	
	monitoring systems, smart thermostats, and analog signal-based automation where real-time analog data is converted to digital for	
	processing and control.	
7	Implement a motion control system by interfacing a stepper motor with	CO2
/	the PIC18FXXXX microcontroller to achieve precise rotational	002
	movement. This application is widely used in CNC machines, 3D	
	printers, robotic arms, and automated positioning systems where	
	accurate control of angular displacement is essential.	
8	Develop an embedded control system using Arduino by interfacing	CO3
	various sensors (e.g., temperature, light, motion) and actuators (e.g.,	
	motors, relays, buzzers) to enable real-time monitoring and automated	
	response. This setup is fundamental in smart home automation,	
	environmental monitoring, and robotics applications where sensor data	
	triggers actuator actions for intelligent control.	
	Guidelines for Laboratory Conduction	
	acher will brief the given interfacing of embedded system to students	
	crocontroller Kits and interfacing modules will be provided in the Lab	
	idents will perform the allotted experiment in a group (two students in e	each group)
	the supervision of faculty and lab assistant.	1. 6
	ter performing the interfacing and programming students will check their r	esults from
	acher.	
5. Af	ter checking they have to write the conclusion of the final result.	
	Guidelines for Student's Lab Journal	
	e-up should include title, aim, interfacing diagram, algorithm, procedure, ca	alculations,
wave	form, conclusion and questions, if any	
	Guidelines for Term work Assessment	
Each	experiment from the lab journal is assessed for thirty marks based on three	rubrics.
	rics R-1 for timely completion	
R-2 t	for understanding	
R-3	for presentation/journal writing where each rubric carries ten marks	

Strength of CO-PO/PSO Mapping (Sample):

Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is mapped.

Each Course Outcome addresses a sub-set of POs and PSOs to varying levels.

(Strengths: 1- Low, 2 – Medium, 3 - Strong)

		Strength of CO-PO/PSO Mapping													
		PO												PSO	
	1	1 2 3 4 5 6 7 8 9 10 11 12 1									1	2			
CO1	3	3	3	3	3	-	-	-	-	-	-	-	3	3	
CO2	3	3	3	3	3	-	-	-	-	-	-	-	3	3	
CO3	3	3	3	3	3	-	-	-	-	-	-	-	3	3	

B. Tech. 2023 Pattern Semester: V

2302307D: Lab work in Foundation course in ML

Teacl	hing Scheme:	Credit Scheme:	Examination Scheme:							
Pract	ical : 02hrs/week	01	Practical Exam: 25 Marks							
		Term Work: 25Marks								
Prere	equisite Courses, if any:									
Com	panion course, if any:									
Cours	se Objectives:									
1.	Implement and compare of	ore deep learning component	ents							
2.	2. Develop and train CNN and RNN models									
3.	3. Evaluate model performance.									

Course	e Outcomes: On completion of the course,	students will be	able to-
	Course Outcomes	Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)
CO1	Understand and implement basic deep learning concepts such as neural networks and activation functions.	L2: Understand	1-Imitation
CO2	Develop and train convolutional and recurrent neural network models for classification and prediction.	L3: Apply	1-Imitation
CO3	Evaluate model performance using appropriate deep learning metrics and tools.	L4: Analyze	1-Imitation

	List of Laboratory Experiments									
Sr. No.	Laboratory Experiments	CO Mapped								
1	Implement and compare ReLU, Sigmoid, and Tanh on the same dataset; visualize activation outputs and training convergence.	CO1								
2	Implement a basic neural network using Keras or PyTorch for a binary classification task (e.g., classifying spam vs. non-spam emails or IRIS dataset).	CO1								
3	Train a Convolutional Neural Network on MNIST or CIFAR-10 dataset and evaluate accuracy.	CO2								
4	Use VGG16, ResNet50, or MobileNet to classify custom images using	CO2								

	transfer learning and fine-tuning.								
5	Implement RNN or LSTM to perform time series prediction (e.g., stock prices) or text classification (e.g., IMDB sentiment analysis).	CO2							
6	Experiment with different combinations of optimizers (SGD, Adam, RMSProp) and loss functions; plot and compare convergence curves.								
7	Compute and visualize confusion matrix, precision, recall, F1-score, and ROC curve for a classification model.								
8	Mini Project – Design an integrated project combining big data tools and deep learning models.								
	Guidelines for Laboratory Conduction								
 calculation, and outcome of this experiment. Equipment and kits required for the allotted experiment will be provided by the lab assistants using SOP. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistants. After performing the experiment students will check their readings, calculations from the teacher. After checking they have to write the conclusion of the final result. 									
	Guidelines for Student's Lab Journal								
	ite-up should include title, aim, and diagram, working principle, procedure, obs phs, calculations, conclusion and questions, if any. Guidelines for Teamwork Assessment	servations,							
R2 R3 To	 : Timely completion of experiment (10 Marks) :: Understanding of experiment (10 Marks) :: Presentation / clarity of journal writing (10 Marks) tal 30 marks for each experiment and average marks of all experiment 	s will be							
CO	nverted into 25 marks of term work.								

	Strength of CO-PO Mapping											CO-PSO Mapping		
	PSO												PS	50
	1 2 3 4 5 6 7 8 9 10 11 12								1	2				
CO1	3	2	2	2	3	-	-	-	1	2	-	2	3	2
CO2	3	3	3	2	3	-	-	-	2	2	2	2	3	3
CO3	2	3	2	3	3	-	-	-	1	2	1	3	2	2

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

T. Y. B. Tech. Pattern 2023 Semester: V								
2302308: Digital Business Management								
Teaching Scheme:Credit Scheme:Examination Scheme:								
Theory: 02hrs/week	02	Continuous Comprehensive Evaluation: 50 Marks						
Prerequisite Courses, if an								
Companion course, if any	:							
Course Objectives:								
1. To familiarize with di	gital business concept.							
2. To acquaint with E-co	ommerce.							
3. To give insights into	E-business and its strategies.							

Course Outcomes: On completion of the course, students will be able to-						
	Course Outcomes	Bloom's Level				
CO1	Understand fundamentals of Digital Busines	2-Understand				
CO2	Identify drivers of digital business.		2-Understand			
CO3	Illustrate various approaches and techniq business and management.	ues for E-	2-Understand			
CO4	Identify security threats in e-business.		2-Understand			
CO5	Prepare E-business plan.		3-Apply			
	COURSE CONTENT	ſS				
Unit I	Introduction to Digital Business	(04 hrs)	COs Mapped - CO1			
	on, Background and current status, E-mark and impacts. Difference between physical eco	-				
Unit II	Drivers of digital business	(04 hrs)	COs Mapped - CO2			
Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things (digitally intelligent machines/services), Opportunities and Challenges in Digital Business.						
Unit III	Overview of E-Commerce	(08 hrs)	COs Mapped – CO3			
E-Commerce: Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement, B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals. Other E-C models and applications, innovative EC System-From E- government and learning to C2C, mobile commerce and						

pervasive computing EC Strategy and Implementation EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e- commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC.

Unit	Managing E-Business	(07 hrs)	COs Mapped –				
IV	_		CO4				
00	Knowledge, Management skills for e- busine						
-	Threats to e-business -Security Overview						
• •	n, Cryptography, Public Key and Private Key						
	ertificates, Security Protocols over Public N						
-	Control, Public Key Infrastructure (PKI) for	Security, Prop	minent Cryptographic				
Applicatio							
Unit V	E-Business Strategy	(07 hrs)	COs Mapped –				
			CO5				
	s Strategic formulation- Analysis of Company'						
	ent, Selection of strategy, E-business strategy in		allenges and E-				
Transition	,From Idea to Realization-Business plan, Case	Studies.					
	Text Books						
1. Urmi Du	utta, Neha Somani, "E-Commerce & Business	Communicati	on", Oxford				
University	Press						
	. Awad, "E-commerce from vision to fulfilmen						
3. Dave Cl	naffey, "Digital Business and E-Commerce Ma	nagement", 6	th Edition, Pearson				
4. Colin C	ombe, "Introduction to E-business: Management	nt and Strateg	y", 1st Edition ,				
Elsvier							
5. Eloise C	5. Eloise Coupey, "Digital Business Concepts and Strategy", 2nd Edition, Pearson						
Reference Books							
1. Vinocenzo Morabito, "Trend and Challenges in Digital Business Innovation" Springer							
2. Erika Darics, "Digital Business Discourse", Palgrave Macmillan							
3. "E-Governance-Challenges and Opportunities", Proceedings in 2nd International							
	e theory and practice of Electronic Governance						
4. "Perspectives the Digital Enterprise –A framework for Transformation", TCS Consulting							

Journal Vol. 5

	Strength of CO-PO Mapping									CO-	PSO			
										Map	ping			
													PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	3	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Activity	20					
2	Presentation	30					
	Total	50					

Tut. No.	Title of Tutorial
1	Compare conventional business with e- business based on structure, mechanisms and economics.
2	Discuss the role of Big Data and Data Analytics in Digital Business Management.
3	Review various Opportunities and Challenges in Digital Business.
4	Prepare a report on societal impacts of Digital Business.
5	Review various security aspects of Digital Business.
6	Discuss the various steps for executing the business plan digitally.
7	Develop a strategy for E-Business for selling a product online.
8	Discuss a typical case study of any one Digital Business.

	Т. Ү. І	3. Tech. E&TC Patter	n 2023			
2302309	9A: MDM3: Cyber S	ecurity, Tools, Techni	iques and Counte	r Measures		
Teaching Sc	Examination Sch	eme:				
Theory :03h	rs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			
		oduction to Computer S				
		rity / Information Secursecurity Laws, Ethics &				
Course Obje 1. Understan	c tives: d core principles of cy	/bersecurity and comme es of cyberattacks and	on threat landscape	es.		
 Apply sec Evaluate a 	urity tools and technic nd implement counter	ues to protect networks measures against malw	s, systems, and dat vare, phishing, and	intrusion.		
		al, legal, and compliand		ecurity.		
Course Out	comes: On completion	n of the course, students	s will be able to-			
		Course Outcomes		Bloom's Level		
CO1	information systems.			1- Remember		
CO2	Describe key cybers system protection.	ecurity tools and techni	iques used for	2- Understand		
CO3	Apply appropriate codevices.	ountermeasures to secu	re networks and	3- Apply		
CO4	Analyze security inc impacts.	idents to determine cau	uses and potential	4-Analyze		
CO5	Demonstrate the use environment.	e of ethical hacking too	ls in a controlled	3- Apply		
		COURSE CONTENT	S			
	roduction to Cyber S namics	ecurity and Threat	(07hrs)	COs Mapped CO1		
Cyber Security Essentials-What is Cyber Security Essentials, Indian Cyberspace, Security Concept, Basic Cryptography. Attack Vectors, Threat, Risk and Vulnerability. Advance Persistent Threat and cyber kill chain						
-	ber Security Frameworks and Network (08hrs) COs Mapped fense Mechanisms – CO2					
Cyber Security Framework: Cyber Security Policy, Cyber Security Regulations in INDIA, Cyber Security Regulations in other countries, Cyber Security Policy Framework. Firewall And Packet Filters:						
Firewall, Pac	ket Filtering, IDS, IPS	S, Security Information	and Event Manag	ement		

Unit III	Network and Application Security Tools and Techniques	(07hrs)	COs Mapped - CO3				
Introduction to WindowsFirewall, Introduction to Linux Firewall, Attacks On Wireless Networks: Basics of Wireless Networks, Standards in Wireless Networks, Wireless Networks Attack. Application Inspection Tools : ZAP, SQLMap, DVWA, WebGoat.							
Unit IV	Web-Based Attacks, Cyber Crimes, and Incident Response	(07hrs)	COs Mapped - CO4				
Web Attack- Browser Attack, Web Attacks Targeting Users, Obtaining user for website data, Email Attacks.Cyber Crimes – Types of Cyber Crime, Hacking, Cyberspace and Criminal Behaviour, Classification of Terms, Traditional Problems associated with computer crime, Introduction to Incidence Response, Digital Forensic							
Unit V	Foundations of Cyber Law and Computer Crime	(07hrs)	COs Mapped - CO5				
A brief h	er language, Network Language, Realms of Cyber history of Internet, Recognizing and defining com- Indian IT Act 2000, Digital Evidences and chain of Taxt Packs	puter crime, Cont					
Text Books 1. Principles of Cyber Security Course Code: PGDCS-101 Published by Dr. Babasaheb Ambedkar 2. Open University Cyber Security Techniques: PGDCS-103 Published by Dr. Babasaheb AmbedkarOpenUniversity							
	Reference Books						
 Cyber Security – Understanding Cyber Crimes, Computer Forensics and Legal Perspectives Author: Nina Godbole, Sunit Belapure, Publisher: Wiley India Information Systems Security – Security Management, Metrics, Frameworks and Best Practices Author: Nina Godbole, Publisher: Wiley India. NPTEL Link							
Prac		11a.					

	Strength of CO-PO Mapping										PSO ping			
	PSO									-	50			
	1	2	3	4	5	6	7	8	9	10	11	12	-	-
CO1	3	2	-	-	-	-	2	3	-	2	-	2	-	-
CO2	3	2	-	-	2	3	-	3	-	2	-	2	-	-
CO3	3	3	2	-	3	3	-	3	-	2	-	2	-	-
CO4	3	3	2	2	2	3	-	3	-	2	-	2	-	-
CO5	2	2	3	2	3	3	-	3	2	3	2	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
No.								
1	Assignment:							
	Assignment No. 1 - Unit 1 (10 Marks)							
	Assignment No. 2 - Unit 2 (10 Marks)	10						
	Assignment No. 3 – Unit 3 (10 Marks)	10						
	Assignment No. 4 - Unit 4 (10 Marks)							
	Assignment No. 5 - Unit 5 (10 Marks)							
2	Quiz (Using LMS):							
	Unit No. 1 (10 Questions - 10 Marks)							
	Unit No. 2 (10 Questions - 10 Marks)	10						
	Unit No. 3 (10 Questions - 10 Marks)	10						
	Unit No. 4 (10 Questions - 10 Marks)							
	Unit No. 5 (10 Questions - 10 Marks)							

		. B. Tech. E&TC Patt MDM3: Data Science				
Teaching	Scheme:	Credit Scheme:	Examination	Schei	ne:	
Theory :	03hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			
Prerequi	site Courses, if any: pi	ior knowledge of progr	camming langua	ige woi	uld be helpful	
Compani	on course, if any: und	erstanding of Python,	MATLAB			
 To To To To To 	establish a solid found develop proficiency in equip learners with ski prepare students to bui Dutcomes: On completi	ation in statistical and p Python programming. Ils in data handling and ld end-to-end data scie	probabilistic rea l visualization. nce solutions.	C		
	Course Outcomes					
CO1		amming and core data for data science applica		ndle	Level 3	
CO2		nalysis, probability atory techniques to	• • • •		3	
CO3	Perform essential dat	a preprocessing, dimer sed learning algorith			3-Apply & 4-Analysis	
CO4	Implement deep learning and unsupervised learning techniques to solve complex data science problems such as classification, clustering, and anomaly detection.3-Apply & 6- Implement ation					
CO5						
COURSE CONTENTS						
Unit I	Introduction to	o Data Science	(08hrs)	COs CO1	Mapped -	
introducti	on to data science, Di on of python, Google C Data Types, Input/Ou	Colab and their features	C	Data	Science, Basic	

Making and Looping, Function and its syntax, Positional arguments, Keyword arguments etc, Exercises on Loops, decision making and functions, String: Operations & Functions, List: Accessing List, Slicing, Cloning/Copy etc,Set and Tuple: Accessing, Slicing, Operations & Functions,Dictionary: Properties, Accessing Dictionary, Problems on Dictionary,Exercises on String, Set, Tuple and Dictionary

Unit II	Statistics, Probability & Data Exploration	(07hrs)	COs Mapped - CO2					
estimation Hypothe	Measures of centrality, dispersion, skewness, and kurtosis , Data distributions and estimation, Exploratory Data Analysis (EDA): visualization, outliers, correlation, Hypothesis testing: t-tests, chi-square, ANOVA, p-values, Probability theory fundamentals, Hands-on exercises using Python (NumPy, Pandas, Seaborn/Matplotlib, SciPy)							
Unit III								
Scaling, Reduction	Data Preprocessing, Handling missing values, Class Imbalance and its remedies, Feature Scaling, Transformation, Discretization, Image and Text Preprocessing, Dimensionality Reduction, Feature Ranking, Feature Selection and Feature Extraction, Exercises on Data Preprocessing and Dimensionality Reduction							
Score Exercise Logistic Recogni Churn P Project	Performance measures: Error, Accuracy, Precision, Recall, Confusion Matrix and AUC Score Exercises on supervised learning algorithms: Linear Regression – Predict Housing Prices, Logistic Regression – Binary Classification, KNN Classifier – Handwritten Digit Recognition, Decision Tree Classifier – Play Tennis Dataset, Random Forest – Customer Churn Prediction Project 1: Student Performance Prediction, Project 2: Email Spam Classifier, Project 3: Multi-Class Classification – Iris Dataset							
Unit IV	Advanced Neural Networks & Unsupervised Learning	(07hrs)	COs Mapped - CO4					
Overview of modern Deep Learning frameworks: TensorFlow, Keras, PyTorch Applications of Unsupervised Learning: Clustering, anomaly detection, dimensionality reduction Deep Learning: Image Classification and Convolutional Neural Networks,Text Classification and Recurrent Neural Networks, Exercises using deep learning models: Convolutional Neural Networks (CNNs) for Image Classification, Recurrent Neural Networks (RNNs) for Text Classification, Sentiment analysis or SMS spam classification using RNN								
Unit VEnd to End project using Python and MATLAB(07hrs)COs Mapped - CO5Stans for and to and machine learning project. End to and implementation of various real								
Steps for end to end machine learning project, End-to-end implementation of various real- life projects using python: Sentiment Analysis using LSTM, Real-Time Object Detection, Image Classification on CIFAR-10								

End-to-end implementation of various real-life projects using MATLAB: ECG Signal Classification using ML, Image Segmentation using K-Means

Text Books

1. Grus, J. (2019). Data science from scratch: first principles with python. O'Reilly Media

Reference Books

- 2. Kroese, D. P., Botev, Z., Taimre, T., & Vaisman, R. (2019). Data science and machine learning: mathematical and statistical methods. CRC Press.
- 3. Thareja, R. (2022) Data Science and Machine Learning using Python. McGraw Hill.

NPTEL Link

https://onlinecourses.nptel.ac.in/noc24_cs59/preview

https://www.youtube.com/watch?v=tA42nHmmEKw&list=PLyqSpQzTE6M_f Fg1zZmeGIkenMDgXKGYi

	Strength of CO-PO Mapping										CO-PSO			
											mapping			
]	PO						PS	50
	1	2	3	4	5	6	7	8	9	1	11	12		_
										0			1	2
CO1	3	2	2	2	2	-	-	-	-	-	-	-	-	-
CO2	3	2	2	2	2	-	-	-	-	-	-	-	-	-
CO3	3	3	3	2	3	-	-	-	-	-	-	-	-	-
CO4	CO4 3 3 3 2 3										-	-		
CO5	3	3	3	2	3	-	-	-	-	-	-	-	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Assignment:	10					
	Assignment No. 1 - Unit 1 (10 Marks)						
	Assignment No. 2 - Unit 2 (10 Marks)						
	Assignment No. 3 – Unit 3(10 Marks)						
	Assignment No. 4 - Unit 4(10 Marks)						
	Assignment No. 5 - Unit 5(10 Marks)						
2	Quiz (Using LMS):	10					
	Unit No. 1 (10 Questions - 10 Marks)						
	Unit No. 2 (10 Questions - 10 Marks)						
	Unit No. 3 (10 Questions - 10 Marks)						
	Unit No. 4 (10 Questions - 10 Marks)						
	Unit No. 5 (10 Questions - 10 Marks)						

	Т. Ү. В	3. Tech.Pattern 2023 Se	emester	r: V		
	2302310	: Intellectual Property F	Rights	(IPR)		
		(Branch: E&TC)				
Feaching S	minatio	on Scheme:				
Tutorial: 01hr/week 01 Tutori					25 Marks	
Practical : 02hrs/week Term wo					k: 25 Marks	
Prerequisit	e Courses, if any: N	NA				
Course Obj						
-	-	e understanding of the pat	tent sys	stem and	d its importance in	
1	ng inventions.	knowledge and skills nece	occorrect	to analy	za invantions for	
patental		chowledge and skins held	288al y 1	to analy	ze inventions for	
1		ples and techniques of dra	afting o	clear, co	oncise, and legally	
sound p	atent applications		-			
Course Out	tcomes: On complet	ion of the course, student	ts will l	be able	to—	
		Course Outcomes			Bloom's Level	
CO1	Explain the patent	system and its requireme	ents.		2-Understand	
CO2	Determine if an in	vention can be patented.			2-Understand	
CO3	Draft a patent appl	ication.	2-Understand			
	I	COURSE CONTENT	T S		1	
Unit I	Indian Patent Sys	tem & Patentability Bas	sics	(04 hrs)	COs Mapped - CO1	
Overview of	f the Indian Patent S	ystem, Structure and Sco	pe of t	,		
Provisions of	of the Patents Rules,	2003 (incl. Amendments	;)			
Patentabili Exceptions	ty Criteria: Novelty	y, Inventive Step, Industri	ial App	licabilit	y, Statutory	
Unit II	Patent Drafting &	Filing Procedure		(04 hrs)	COs Mapped – CO2	
Specificatio of Patent Dr	n, Structure of a Pat afting Patent Filing	ordinary, Convention, PC ent, Document: Title, Ab g Process: Filing, Publica rt (FER), Responses & Ar	stract, ation, R	Descrip Request 1	tion, Claims , Basic	
Unit III	C	& Global Aspects		(04	COs Mapped –	

and Rights, Compulsory Licensing, Patent Enforcement and Infringement, PCT

&Convention Applications, International Filing and Timelines

Text Books

1. Kalyan C. Kankanala, A.K. Narasani, V. Radhakrishnan, "Indian Patent Law and Practice", Oxford Press.

Reference Books

1. David Bainbridge, "Intellectual Property", Pearson.

2. NPTEL Course on Intellectual Property

NPTEL Course on "Patent Law for Scientists and Engineers" by Prof. Feroz Ali IIT Madras

Link of the Course: <u>https://onlinecourses.nptel.ac.in/noc20_hs55/preview</u>

	Strength of CO-PO Mapping												PSO ping	
							PO)					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	2	2	-	-	-	-	-	-	2
CO2	CO2 - 3 - 2										2	-		
CO3	-	-	3	-	2	-	-	-	2	2	-	2	2	-

	Guidelines for Tutorial & Teamwork Allocation							
Sr.	Components	Marks Allotted						
No.								
1	Tutorials	25						
2	Performance in Lab	25						

List of Tutorials (25 Marks)

- 1. To write a patent draft.
- 2. To write a Copyright Registration Draft
- 3. To Draft a Trademark Application
- 4. To Prepare an Invention Disclosure Form (IDF)
- 5. To write a Software Copyright Draft

	T. Y. B. Tech.Pattern 2023 Semester: V 2302310: Lab work in Intellectual Property Rights (IPR)								
(Branch: E&TC)									
Teach	Feaching Scheme: Credit Scheme: Examination Scheme:								
Tutor	ial: 01hr/week	01	Tutorial: 25 N	Marks					
Practi	ical : 02hrs/week		Term work: 2	25 Marks					
Prere	quisite Courses, if any: N	NA							
Comp	oanion course, if any: Inte	ellectual Property Rights							
3. Cours	-	mplete patent specifications							
	Course	Outcomes	Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)					
CO1									
CO2 Evaluate the patentability of inventions through novelty, inventive step, and prior art/trademark searches. 5- Evaluate 2- Manipulat									
CO3	Draft provisional and conspecifications for a given		6- Create	3- Precision					

	List of Laboratory Experiments					
Sr. No.	Laboratory Experiments	CO Mapped				
1	Introduction to Patent System : Practical overview of Indian Patent Office (IPO) website	CO1				
2	Understanding Patent Acts & Rules: Identify major sections and amendments	CO1				
3	 Patentability Analysis (Novelty, Inventive Step, etc.)and Copyright Compare two similar patents Identify novelty and inventive step 	CO2				
4	Prior Product / circuit Design Search Activity (Trademark , etc)	CO2				

5	Understanding Patent Specifications	CO3				
5	- Dissect a sample patent (Title, Abstract, Claims, Description)	005				
6						
	- Draft a Provisional Specification for a given project idea					
7	Patent Drafting Exercise – Part 2	CO3				
	- Convert the provisional into a Complete Specification					
8	Evaluation & Presentation	CO3				
	Guidelines for Laboratory Conduction	<u> </u>				
	eacher will brief the given experiment to students, its procedure	, observations,				
	alculation, and outcome of this experiment.					
	2. Lab assistants will provide access to patent databases, project ideas, templates, an					
	equired tools.	issaat a sampla				
	tudents will perform the activity (e.g., draft a patent, compare patents, d atent) in groups under supervision.	issect a sample				
	ubmit your work (search results/drafts/comparisons) to the faculty f	for review and				
	edback.	ior review und				
	ased on feedback, write a brief conclusion summarizing your understa- utcome.	nding and final				
	Guidelines for Student's Lab Journal					
Writ	e-up should include title, aim, and diagram, working principle, procedure	, observations,				
grap	hs, calculations, conclusion and questions, if any.					
	Guidelines for Termwork Assessment					
	R1: Timely completion of experiment (10 Marks)					
	R2: Understanding of experiment (10 Marks)					
	R3: Presentation / clarity of journal writing (10 Marks)					
	Total 30 marks for each experiment and average marks of all experiments will be					
con	converted into 25 marks of term work.					

	Strength of CO-PO Mapping										CO-P Mapp			
	РО											PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	2	-	2	-	2	-	2	-	-	-
CO2	CO2 2 3 - 2 2 2 2 2										2	2		
CO3	2	2	3	-	2	-	2	2	3	3	2	2	2	3

SEMESTER VII

	T. Y. B. 7	Fech. Pattern 2023 Sen	nester: VI			
	23	302311: Embedded Syst	em			
Teachi	ng Scheme:	Credit Scheme:	Examination	n Scheme:		
Theory	7 :03 hrs/week	03	Continuous ComprehensiveEvaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			
Prereq	uisite Courses, if any: N	licrocontrollers				
Compa	nion course, if any:					
1. T E 2. T M 3. T 4. T a	Objectives: To make the students awar Embedded C. To get the students acquair Aicroprocessors in Embed To get insight of architectur To enhance the capabilitie and communication device Outcomes: On completi	nted with the need and ap lded systems. are and features of basic r s of students to interface es.	plications of Al nicrocontrollers of various I/O d	RM s. levices, sensors		
Course			s will be able to			
		Course Outcomes		Bloom's Level		
CO1	Explain the basics of	embedded system		2- Understand		
CO2		herals of ARM 7 based m		3-Apply		
CO3	Interface different microcontrollers	real time devices A	RM 7 based	3-Apply		
CO4	Select software archit	tecture for embedded syst	em	3-Apply		
CO5	Implement embedded	l system using 32 bit micr	rocontroller	3-Apply,		
		COURSE CONTENTS				
Unit I	Embedded System Ov	erview	(06 hrs)	COs Mapped - CO1		
System and tech	ded System Introduction, , Classification and Chara hno- economical), Embed mory , Embedded system	acteristics of Embedded S Ided processor technology	ystem ,Design	metrics(technical		
Unit II	ARM 7 based Microco	ntroller	(07 hrs)	COs Mapped - CO2		
ARM c	ore data flow model, Prog	grammers model, Registe	rs, CPSR and S	PSR, Processor		

modes, ARM Nomenclature. LPC2148: Features, Block Diagram and Description, System
Control Block, Memory Map, System Control Block (PLL and VPB divider), Pin Connect
Block, GPIO, Timer Block for Delay Generation
Block, GPIO, Timer Block for Delay Generation

TT 1 /							
Unit III	ARM Peripheral	(07 hrs)	COs Mapped – CO3				
LPC 2	LPC 2148 Interfacing with LED, Switches and RelayLPC 2148 interface with LCD, on-						
chip D	AC for waveform generation, Interfacing with ARM	A 7 with DHT	11 sensor and				
servor	otor, on-chip ADC, Vector Interrupt Controller(VI	C)					
Unit	Software aspects of embedded systems	(07 hrs)	COs Mapped –				
IV			CO4				
•	mming Embedded C,OS used in embedded system,		•				
	es and related issues, Concept of RTOS, Types of l	RTOS, differen	ces from GPOS,				
real tin	ne scheduling						
Unit	Latest trend in embedded system and Case	(06 hrs)	COs Mapped –				
\mathbf{V}	Studies		CO5				
Latest	rend in embedded system, Vending Machine, Digit	tal Camera, Ro	botics Arm				
Contro	1						
	Text Books						
1.K.V.	Shibu, "Introduction to Embedded Systems", McGi	aw Hill Educat	tion India Private				
	, 2n d Edition						
2. Lyla	B Das "Embedded Systems" Pearson publication						
3. Andrew Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide –							
Designing and Optimizing System Software", Elsevier, 1st Edition							
Reference Books							
1.UM1	1.UM10139 LPC214x User manual, NXP Semiconductor						

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	2	3
CO2	3	2	-	-	3	-	-	-	-	-	-	3	2	3
CO3	3	2	3	-	3	-	-	-	-	-	-	3	3	3
CO4	3	2	3	-	3	-	-	-	-	-	-	3	2	2
CO5	3	3	3	-	3	-	-	-	-	-	-	3	3	3

(Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Ryalijation					
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10				
2	5 Quiz	10				
	Total	20				

B. E. B. Tech. Pattern 2023 Semester: VII 2302312: Power Electronics						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Theory :03 hrs/week	02	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks				
Prerequisite Courses, if an	y: Basic Electronics					

1. To introduce different power devices viz. SCR, GTO, MOSFET and IGBT with construction, characteristics, repetitive and non-repetitive ratings and typical triggering/driver circuits.

2. To understand working, design and performance analysis and applications of various power converter circuits such as ac to dc converters, inverter and chopper To know various protection circuit requirements of power electronic devices.

	Course Outcomes		Bloom's Level			
CO1	Select power devices for different pow conversion applications. Design & Implement circuits for power devices	-	3- Apply 2- Understand			
CO2	Understand the operation of Controlled rectifie phase AC voltage controller. Analyze parameters of Controlled rectifiers	4-Analysis, 2- Understand				
CO3	Understand the operation of Choppers and Analy performance parameters of choppers	4-Analysis, 2- Understand				
CO4	Understand the operation of Inverters an performance parameters of Inverters	4-Analysis, 2- Understand				
CO5	CO5 Utilize power converters in different industrial applications.					
	COURSE CONTENTS					
Unit I	Power Devices	(08 hrs)	COs Mapped - CO1			
Snubber Switchin Operatio	SCR: Construction, Operation & characteristics, different ratings, Triggering Methods, Snubber Circuits. Power MOSFET: Construction, Operation, Static characteristics, Switching characteristics, Breakdown voltages, Safe Operating Area. IGBT: Construction, Operation, Steady state characteristics, Switching characteristics, Safe operating area, applications, Typical Gate drive circuits for Power MOSFET / IGBT					
Unit II	Controlled Rectifiers & Single phase AC voltage controller	(07 hrs)	COs Mapped - CO2			

Single phase Semi & Full converters for R, R-L loads, Performance parameters, Three phase Semi & Full converters, Power factor improvement techniques, PWM rectifiers, Single phase AC voltage controller with R load. Typical Gate drive circuits for controlled rectifiers

Unit	DC-DC Converters	(07 hrs)	COs Mapped –
III			CO3

Step down chopper for R/RL load, Step up chopper, control strategies. 2-quadrant & 4 Quadrant choppers, Performance parameters, Applications of choppers SMPS, SMPS topologies, Flyback converter, Buck regulator TPS40200.

Unit	DC-AC Converters	(07 hrs)	COs Mapped –
IV			CO4

Single phase full bridge inverter for R & R-L loads, performance parameters, three phase voltage source inverter for balanced star R load. Variable frequency and Voltage control of inverters, Need of PWM inverters. Design of control circuit design for inverters using PWM ICs LM3524.

Unit	Power Electronics Applications	(07 hrs)	COs Mapped –
V			CO5

UPS, HVDC Transmission System, DC drives, Three phase VFD drive, three phase BLDC drive

Text Books

- 1. M. H. Rashid, "Power Electronics Circuits Devices and Applications", PHI, 4th Edition 2017 New Delhi.
- 2. M. D. Singh and K. B. Khanchandani, "Power Electronics", TMH, 2nd Edition 2006.

Reference Books

- 1. Bogdan M. Wilamowski, J. David Irwin, "The Power Electronics and Motor Drives Handbook", CRC Press, 1st Edition, 2011. eBook: ISBN 9780429165627, 2019.
- 2. Muhammad H. Rashid, "Power Electronics Handbook", Academic Press, 2nd Edition, 2001
- 3. Ned Mohan, T. Undeland & W. Robbins, "Power Electronics Converters Applications and Design, John Willey & sons, Singapore, 2nd Edition Oxford University Press, New Delhi, 2005
- 4. Ali Emadi Alireza Khaligh Zhong Nie Young Joo Lee, "Integrated Power Electronic Converters and Digital Control", CRC Press, 1st Edition.
- Vinod Kumar Khanna "Insulated Gate Bipolar Transistor IGBT Theory and Design", John Wiley & Sons, Illustrated Edition. Print ISBN: 9780471238454; Online ISBN: 9780471722915, DOI: 10.1002/047172291.
- 6. L. Ashok Kumar, S. Albert Alexander and Madhuvanthani Rajendran, "Power Electronic Converters for Solar Photovoltaic Systems", Elsevier, 1st Edition, 2020

	Strength of CO-PO Mapping									CO-PSO Mapping				
	PSO							PS	50					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO2	3	3	3	-	2	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	2	-	-	-	-	-	-	-	2	2
CO4	3	3	3	-	2	-	-	-	-	-	-	-	2	2
CO5	3	3	2	-	2	-	-	-	-	-	-	2	2	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Ryaluation						
1	Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10					
2	Performance in Unit Tests (5 tests, one on each unit)	10					
	Total	20					

T. Y. B. Tech. Pattern 2023 Semester: I							
2302313: Lab work in Embedded Systems and Power Electronics							
Teaching Scheme:Credit Scheme:Examination Scheme:							
Practica	l :02hrs/week	01	Pra Ter	ks arks			
Prerequ	isite Courses, if any: M	icrocontrollers					
Course	Outcomes: On completion	on of the course, stude	nts w	ill be able to–			
	Course	Outcomes		Bloom's	Psychomotor		
				Level	domain		
CO1	Apply knowledge of d interface basic compor microcontroller.	6	n to	Apply	Adaptation		
CO2	Apply programming sl peripherals and interfa using LPC 2148.		rs	Apply	Adaptation		
CO3	Apply serial communication to communicate with outside world.			Apply	Adaptation		
CO1	Understand the operating principles of various power electronic devices			Understand	Imitation		
CO2	Use power electronic simulation packages & hardware to develop the power converters.			Apply	Adaptation		
CO3	Analyze and choose th for various application		ers	Apply	Adaptation		

PART A

	List of Laboratory Experiments / Assignments					
Sr. No	Laboratory Experiments / Assignments	CO Mapped				
1	Write a program to interface button, LED, relay and buzzer to LPC 2148	CO1				
2	Write a program to interface GLCD to LPC 2148	CO1				
3	Generate square wave, triangular and Sawtooth using DAC.	CO2				
4	ADC (Analog-to-Digital Converter) Interface using LPC2148: Read data from Temperature Sensor (e.g., LM35) and LDR sensor	CO2				
5	Write a program to interface servo motor to LPC2148	CO2				
6	Transmit and receive data using serial communication to another Board or PC	CO3				
7	Interface a GSM module to LPC2148 and write a program to Send and receive messages using GSM to another user.	CO3				
8	Interface a GSM module to LPC2148 and write a program to track the location using GPS.	CO3				

	List of Laboratory Experiments / Assignments								
Sr. No.	Laboratory Experiments / Assignments	CO Mapped							
1	Study static characteristics of SCR and decide in which region it gets turn on.	CO1							
2	Plot V-I characteristics of Power MOSFET & understand its application as a Switch.	CO1							
3	Study the static characteristics of IGBT and compare it with MOSFET.	CO1							
4	Implement the design for single phase full converter using IGBT / SCR with R & R-L load and observe the effect of firing angle on the load.(Bulb)	CO2							
5	Implement Step down / step up chopper using power MOSFET and observe the effect of ON time period on the Output.	CO2							
6	To study the design for 5V battery charger using IC TPS40200.	CO3							
7	Single-Phase PWM bridge inverter.	CO2							
8	To study DC motor controller.	CO3							
9	Study the application of solar cells for providing electrical energy to the domestic appliances such as lamp, fan and radio.	CO3							

Guidelines for Laboratory Conduction

1. Teacher will brief the given interfacing of embedded system to students

2. Microcontroller Kits and interfacing modules will be provided in the Lab

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the interfacing and programming students will check their results from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, interfacing diagram, algorithm, procedure, calculations, waveform, conclusion and questions, if any

Guidelines for Term work Assessment

Each experiment from the lab journal is assessed for thirty marks based on three rubrics. Rubrics R-1 for timely completion

R-2 for understanding

R-3 for presentation/journal writing where each rubric carries ten marks

Strength of CO-PO/PSO Mapping (Sample):

Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is mapped.

Each Course Outcome addresses a sub-set of POs and PSOs to varying levels.

(Strengths: 1- Low, 2 – Medium, 3 - Strong)

	Strength of CO-PO Mapping													
	PSO													50
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	
CO1	CO1 3 3 3 - 3													3
CO2	3 3 3 - 3											3	3	
CO3	3	3	3	-	3	-	-	-	-	-	-	-	3	3

Т.	T. Y. B. Tech. Pattern 2023 Semester: VI										
2302314A: Microwave Engineering											
Teaching Scheme:	Credit Scheme:	Examination Scheme:									
Theory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks											
theory		wave propagation, and network									
 Companion course, if any: Course Objectives: To introduce the fundamental principles of microwave engineering, including microwave transmission lines. To familiarize students with waveguides, impedance matching techniques, and microwave network analysis. To explore microwave components, semiconductor devices, and integrated circuits used in communication and radar systems. 											

Course	e Outcomes: On completion of the course, students will be able to)—
	Course Outcomes	Bloom's Level
CO1	Understand the fundamentals of microwave technology and the principles governing transmission lines and wave propagation.	2
CO2	Analyse wave propagation in different waveguide structures and understand the application of Smith charts. utilize scattering matrix representations for N-port microwave network analysis.	3
CO3	Analyse scattering matrix representations for microwave networks, design impedance matching circuits, evaluate microwave components, and apply the knowledge in system design.	3
CO4	Study the characteristics and applications of microwave semiconductor devices, including transistors and diodes, design single-stage transistor amplifier and evaluate RF and microwave oscillators	3
CO5	Understand the principles and operation of microwave tubes, ferrite-based components, and microwave integrated circuits, and apply this knowledge to real-world applications in radar, satellite, and communication systems	3

	COURSE CONTENTS		
Unit I:	Fundamentals of Microwave Engineering and Transmission Line Theory	(07 hrs)	COs Mapped - CO1
	istory of microwaves, microwave frequency ba		
	aves, microwave transmission lines, wave propagat	ion in transm	ission lines, lossy
	ortionless transmission lines.	(07 h m)	
Unit II:	Microwave Network Analysis and Waveguide Fundamentals	(07 hrs)	COs Mapped - CO2
11.	wavegulue Fundamentals		02
TE, TM attenuat	chart - fundamentals and applications, introduction I, TEM, TE & TM modes in circular and rectangulation tion in waveguides, waveguide impedance ar ave networks, impedance, admittance and scattering	ar waveguides nd equivalen	s, cutoff frequency, t circuits, N-port
Unit III:	Microwave Network Theory, Impedance Matching, Resonators, and Passive Components	(8 hrs)	COs Mapped – CO3
S-naran	neters and network analysis, properties of S	matrix im	nedance matching
techniq frequen	ues, QWT and applications, microwave resonators, cy, microwave power dividers, T-junction power , microwave filter design process.	, waveguide r	esonators, resonant
Unit IV:	Microwave Semiconductor Devices, Amplifier Design, and Oscillator Principle	(07 hrs)	COs Mapped – CO4
Based 1	vave semiconductor devices - PIN, schottky, tunnel Microwave Switching and Phase Control, Negativ Avalanche Transit-Time Devices, Microwave Amp	e Resistance	
Unit	Microwave Tubes, Ferrite Devices,	(07 hrs)	COs Mapped –
V:	Integrated Circuits, and Practical Applications		CO5
Compo	vave vacuum electron devices, Microwave Pronents, Microwave Integrated Circuits (MICs) and I tions and system relevance.		
	Text Books		
IEEE P 2. Davi	Collin, Foundations for microwave engineering, se ress, ISBN: 978-078-03-6031-0 d M. Pozar, Microwave Engineering, fourth edition		
812-65	-4190-4		
1	Reference Books	2015 DULL -	oming Dryt I to
	Rao, Microwave Engineering, second edition, Oct. 978-812-03-5159-2	2015, PHI Le	arning PVt. Ltd,
2. Ahm	ad Shahid Khan, Microwave Engineering: Concepts SBN: 978-113-80-7242-8	s and Fundam	entals, 2014, CRC
3. Mich Univers	ael Steer, Fundamentals of microwave and RF desi sity Library, ISBN: 9781469656892		
	ash Kumar Chaturvedi, Microwave, Radar and RF e 978-981-10-7964-1	engineering, 2	018, Springer,

	Strength of CO-PO Mapping													
	PO													
	1	1 1 3 4 5 6 7 8 9 10 11									1	2		
CO1	3	3	-	-	3	-	-	-	-	-	-	2	-	
CO2	3	3	3	-	3	-	-	-	-	-	-	2	-	
CO3	3	3 3 3 - 3											-	
CO4	3	3	3	-	3	2	-	-	-	-	-	2	2	
CO5	3	3	-	-	3	2	-	-	-	-	3	-	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10							
2	Performance in Unit Tests (5 tests, one on each unit)	10							
	Total	20							

T. Y. B. Tech. Pattern 2023 Semester: VI									
2302314B : Process Instrumentation									
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Theory :03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks							
Prerequisite Courses, if any: Bas	sic Electronics Engineer	ring, Mechatronics,							
Companion course, if any:									
Course Objectives: 1. To Make the students familiar with fundamentals of process control and controls schemes 2. To Fundamentals of PLC(Programmable logic controller) and PLC Programming techniques 3. To discuss role of SCADA(Supervisory Control and Data Acquisition) HML (Human									

3. To discuss role of SCADA(Supervisory Control and Data Acquisition), HMI (Human Machine Interface) interfacing with PLC to provide solutions for Process Industries

Course Outcomes: On completion of the course, students will be able to-									
	Course Outcomes		Bloom's Level						
CO1	Explain fundamentals of process control and cont	rol schemes.	2						
CO2	Explain concepts of PLC, its uses for industrial ap	oplications.	2						
CO3	Discuss basics of SCADA, HMI and communicat	ion with PLC	2						
CO4	Make use of knowledge of Installation, troubleshe maintenance of PLC to provide solutions for indus automation problems.	3							
CO5	CO5 Apply basic and advanced PLC instructions to implement control logic for various industrial applications								
	COURSE CONTENTS								
Unit I	Process control & control schemes	(06 hrs)	COs Mapped - CO1						
and sel control ratio, s	Introduction to process control, objectives and benefits, types of processes, characteristics, and selection of control action for them. Necessity of process modeling Study of flow control, pressure control, liquid level, temperature, Scaling, Feedback, feedforward, cascade, ratio, split range, selective control, adaptive control, and model based control, Multivariable control, discrete state control.								

Unit II	Fundamentals of PLC (Programmable Logic controller)	(06 hrs)	COs Mapped - CO2									
CPU, I /li>, Oj Concej Disadv Scan c Logic	undamentals - Block diagram of PLC's, Selection of /Os List, Communication bus Various ranges avail- pen-Circuit and Short-Circuit Tests, Types of Inputs ots, Wiring of the I/O devices, Architectural Evoluti antages, PLC vs Computers, Introduction to the fiel ycle execution.Overview of Conventional ladders vs vs Programmed logic, Programming word level logi gic to contact/coil logic, Relay logic, Relay Sequent	able in PLC's), I s & outputs / Sou on of PLC, PLC ld devices, Conc s PLC Ladder lo c instructions, R	O list selection rce Sink advantages & ept of flags and gic, Hardwired									
Unit III	SCADA, HMI & Communication between PLC & SCADA	(6 hrs)	COs Mapped – CO3									
Unit (F SCAD Comm Modbu	Fundamentals, Comparison of SCADA, DCS, PLC and smart instruments, Remote Terminal Unit (RTU) structure, MTU (Main terminal unit), functions of MTU, Components of a SCADA system, HMI (Human Machine Interface, Interfacing technique of PLC with HMI. Communication between PLC & SCADA system : Industrial Ethernet, TCP/IP,, Fieldbus, Modbus, LAN connectivity: bridges, routers and switches, SCADA network security, P&ID's fundamentals											
Unit IV	PLC Installation, troubleshooting and Maintenance	(06 hrs)	COs Mapped – CO4									
Electri protect module Unit	tion : Consideration of operating environment, Rec cal Noise, Leaky inputs & outputs, Grounding, volta ions & wiring, Program Editing & Commissioning. e, Input & Output malfunctions, Ladder logic progra PLC Programming	age variations & Troubleshooting am. PLC Mainte	surges, Circuit g: Processor nance. COs Mapped –									
Proces contact element Interna Basic I Arithm	VPLC Programming(06 hrs)CO5Processor memory organization, PLC Programming languages, Ladder diagrams, Relays, contactors, switches, sensors, output control devices, latching relays, ladder diagram elements. Instructions: Relay type instructions, Instruction addressing, Branch Instructions, Internal Relay Instructions, Basic Functions : PLC Timer & Counter functions, Timer & Counter Industrial applications, Arithmetic functions, Comparison functions, Jump functions, Data handling functions, Digital Bit functions, PLC matrix Functions, Advanced PLC Functions: Analog PLC											
•	Text Books											
"Programmable Logic Controllers" Frank D. Petruzella McGraw-Hill Education Fourth Edition, Optimization of Industrial Unit Processes - Bela G. Liptak "Programmable Logic Controllers", W. Bolton, Elsevier, Fourth Edition,2015 <u>Reference Books</u> Process Control Instrumentation Technology, C. D. Johnson "Programmable Logic Controllers, Principles & Applications" John W. Wobb, Ronald, A. Rais, PHI publishing, Fifth Edition E-Material : Virtual lab : <u>https://plc-coep.vlabs.ac.in/</u>												
			Virtual lab : <u>https://plc-coep.vlabs.ac.in/</u> PLC manual : <u>http://www.plcmanual.com/</u>									

Learning PLC basics : <u>https://www.youtube.com/watch?v=iF_vvp2kXWg</u> PLC Handbook (practical guide to programming PLC) : <u>www.automationdirect.com</u>

	Strength of CO-PO/PSO Mapping													
			PS	0										
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	2	2
CO4	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO5	3	3	2	-	3	-	-	-	-	-	-	-	3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10							
2	Performance in Unit Tests (5 tests, one on each unit)	10							
	Total	20							

T. Y. B. Tech.Pattern 2023 Semester: VI									
	230	2314C: Advanced Pro	ocessor						
Teachi	ing Scheme:	Credit Scheme:	Examination S	cheme:					
Theory	y :03 hrs/week	03	Continuous Co Evaluation: 20 InSem Exam: 2 EndSem Exam	Marks 20 Marks					
Prereq	uisite Courses, if any: E	mbedded system							
Compa	anion course, if any:								
 To m C. To ge in En To ge To ge To en comm 	e Objectives: hake the students aware of et the students acquainted nbeddedsystems. et insight of architecture a hhance the capabilities of nunicationdevices. e Outcomes: On completi	with the need and appl and features of ARM 7 students to interface of	ications of ARM I microcontrollers. various I/O device	Microprocessors es, sensors and					
		Course Outcomes		Bloom's					
				Level					
CO1	Explain the architectur			2- Understand					
CO2	Explain different perip								
CO3	Implement the real w programming of ARM	cortex based microcon	troller	d 2-Understand					
CO4	Implement serial in microcontroller	nterface using ARN	M cortex base	d 3-Apply					
CO5	Program ARM cortex	using CUBE IDE and	embedded C	3-Apply,					
		COURSE CONTEN	ГS						
Unit I	Embedded Processor	Fundamentals	(06 hrs)	COs Mapped - CO1					
cortex r	ction to ARM CORTEX s nicrocontroller, Firmware CORTEX M4 microproces	e development using CM	ASIS Standard. Int	roduction to					
Unit II	STM32F4xx Periphera	als	(07 hrs)	COs Mapped - CO2					
Introdu	ction Arm Cortex-M core	s, STM32F4xx Archite	cture, ARM STM	Bus Architecture,					

STM32F4xx Clock and SYSCLK, Peripheral Clock, PLL clock, Interrupts and Exceptions in STM32F4xx.

Unit III	STM32F4xx Interfacing	(07 hrs)	COs Mapped – CO3

STM32F4xx GPIO Programming, Interfacing seven segment LED, LDR and MQ3 sensor, STM32F4xx: Counters and Timers: Timer and Delay Generation, UART Programming, on chip ADC and Onchip DAC for waveform generation

IV STM32F4xx Interfacing	Unit IV	STM32F4xx Interfacing	(07 hrs)	COs Mapped – CO4
--------------------------	------------	-----------------------	----------	---------------------

STM32F4xx Interfacing with accelerometer MPU 6050, Ultrasonic Sensor HC-SR04, PWM: Controlling speed and direction of DC Motor, STM32 interfacing with TFT

Unit V	CUBE IDE software and CAN bus	(06 hrs)	COs Mapped – CO5

CUBE IDE software, Different STM 32 board, sequence of transmitting and receiving data on CAN Bus, Raspberry PI board and interfacing for different application

Text Books

 Shujen Chen, Muhammad Ali Mazidi, Eshragh Ghaemi, "STM32 Arm Programming for Embedded Systems: Using C Language with STM32", Nucleo, Micro DigitalEd., Illustrated Edition,2018

Reference Books

1. RM0390 Reference manual, STM32F446xx advanced Arm®-based 32-bit MCUs

2. Joseph Yiu, "The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors", Newnes, 3rdEdition

	Strength of CO-PO Mapping												CO-PSO	
													Mapping	
	PO													50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	1	-	-	1	1	-	I	3	-	-
CO2	3	3	-	-	3	-	-	-	-	-	1	3	3	3
CO3	3	3	-	-	3	-	-	-	-	-	-	3	3	3
CO4	3	3	-	-	3	-	-	-	-	_	-	3	3	3
CO5	3	3	-	-	3	-	-	-	-	-	-	3	-	_

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10								
2	Performance in Unit Tests (5 tests, one on each unit)	10								
	Total	20								

	Т. Ү. В.	Tech. Pattern 2023 S	Semester: I				
	23022314D:	Neural Network and	Fuzzy Control				
Teachi	ng Scheme:	Credit Scheme:	Examination S	Scheme:			
Theory	v :03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks				
Prereq	uisite Courses, if any: Fu	indamental of Comput	ting				
Compa	anion course, if any: NA						
 To le To an To U theor To le fuzzy 	nderstand the basic concept arn basics of Artificial Nethalyze various techniques Understand the principle of y earn the architecture and y associative memory and e Outcomes: On completing	ural of theory and pro- in feedback and feed f of competitive neural algorithm of Cognitro fuzzy systems.	gramming of Mic orward Neural ne networks and A on, Neo cognitro	roprocessors tworks. daptive resonan n The concepts			
		Course Outcomes		Bloom			
CO1	Describe the concept Apply the knowledge	of fuzziness involved of fuzzy set theory.	in various system				
CO2	Understand the diffe Explore different neu	erence between learni ral network architectu	res	ming, L2			
CO3		lications of Neural Ne		L2			
CO4	neural networks.	ental principles of co	1	L2			
CO5	Describe the basics operators, and their a			f GA L2			
		COURSE CONTEN	TS				
Unit I	Fundamentals of Fuzz	y Logic	(06 hrs)	COs Mapped CO1	l -		
union ir	oncepts: fuzzy set theory- ntersection- combination o s-compatibility relations-o tems	f operation- general ag	ggregation operati	ions- fuzzy			
Unit II	Architecture of Neural	Networks	(08 hrs)	COs Mapped CO2	l -		
Archite	ctures: motivation for the	development of natura	l networks-artific	ial neural			

networks-biological neural networks-area of applications-typical Architecture-setting weights-common activations functions Basic learning rules- Mcculloch-Pitts neuron-Architecture, algorithm, applications-single layer net for pattern classification- Biases and thresholds, linear separability - Hebb'srule- algorithm -perceptron - Convergence theorem-Delta rule

Unit III	Basic Neural Network Techniques(07 hrs)COs Mapped - CO2											
of learn	ropagation ting rulesn tive memo tions-Hopt	umber ory neur	of hidd al net,	en laye auto as	ersass sociativ	ociative ve net-	and o	ther neu	ural net	works-	hetro	on
Unit IV	Compet	titive N	eural	Networ	rks		(06 hrs)		COs CO3	Mappe	e d –
Neural network based on competition: fixed weight competitive nets- Kohonenself organizing maps and applications-learning vector quantization-counter propagation nets and applications adaptive resonance theory: basic architecture and operation-architecture, algorithm, application and analysis of ART1 & ART2												
Unit V	Special Neural Networks					(07 hrs)		COs Mapped – CO4			
-	Cognitron and Neocognitron - Architecture, training algorithm and application-fuzzy associate memories, fuzzy system architecture- comparison of fuzzy and neural systems.											
					Text	Books						
	ryvan- Fuz rrence Fuss										1.	
						ce Boo						
2. J.Kli J.M. 1994 3. Vall	 Bart Kosko, —Neural network and Fuzzy Systeml - Prentice Hall-1994. J.Klin and T.A.Folger, —Fuzzy setsl University and information- Prentice Hall -1996. J.M.Zurada, —Introduction to artificial neural systemsl-Jaico Publication house, Delhi 1994. VallusuRao and HayagvnaRao , —C++ Neural network and fuzzy logicl-BPB and Publication, New Delhi, 1996. 											
	ligent Syst				://nptel	.ac.in/c	ourses	/108104	4049/16	6		
				Streng	th of C	<u>O-PO N</u>	Iappin	g				
	1	2	3	4	5	PO 6	7	8	9	10	11	12
0.01	1	<u> </u>	5	4	5	0	1	0	7	10	11	12

	1	2	3	4	3	0	/	0	9	10	11	12
CO1	3	3	2	-	-	-	-	-	-	-	-	3
CO2	3	2	2	-	-	-	-	-	-	-	-	3
CO3	3	3	2	1	-	-	-	-	-	-	-	3
CO4	3	2	2	-	-	-	-	-	-	-	-	3
CO5	3	3	2	1	-	-	-	-	-	-	-	3

Strength of CO-PO Mapping	CO-PSO
---------------------------	--------

													Map	ping
	PO												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	2	1	-	-	-	-	-	-	-	3	-	2
CO4	3	2	2	-	-	-	-	-	-	-	-	3	_	-
CO5	3	3	2	1	-	-	-	-	-	-	-	3	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10								
2	Performance in Unit Tests (5 tests, one on each unit)	10								
	Total	20								

	Т. Ү. В	. Tech. Pattern 2023	Semester: VI				
		23022315A: Advanced	DSP				
Teaching Scheme: Credit Scheme			Examination Scheme:				
Theory :0)3 hrs/week	03	Continuous ComprehensiveEvaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks				
Prerequis	ite Courses, if any:]	Digital Signal Processing	5				
Compani	on course, if any: N	A					
2. To app 3. To 4. To 5. To	introduce wavelet tr plications study Adaptive Filter introduce different n understand application	e Signal Processing funda cansforms and digital fil rs, LMS and RLS algorit nethods for power Spectr on of signal processing to etion of the course, stude	ter implementation thms and Linear F rum estimation of to real world probl	on of w Prediction signals dems.	avelets and on Filters		
	Course Outcomes Bloom's Level						
CO1	Design of practica	l sampling rate converter	rs, and application	ıs.	L6		
CO2	wavelet filters.	ry of wavelets and c	-	gning	L6		
CO3	Implement adapti	ve filters for given applie	cations.		L3		
CO4		pectrum of signals using		5.	L4		
CO5	CO5 Apply signal processing tools to Biomedical Telecommunication Applications			and	L2		
		COURSE CONTEN	TS				
Ι	Multirate DSP		(06 hrs)	CO1	Mapped -		
output of the Changing to conversion decimator Analysis o banks, Tree Unit	he down sampling an the sampling rate by a, Design of practical and interpolator, Ove f Two-Channel QMF	Relation between the Found and up sampling, Represent noninteger factor, Multist sampling rate converters ersampling ADC analysist Bank. Design of perfect the state of the sample	ntation of decimat stage approach to s, Polyphase deco s, Two channel Q t reconstruction M	or and samplin mpositi MF ban I-chann	interpolator, ng rate ion of nk structure, nel filter Mapped -		
		of signals, short-time Fo e wavelet transform (DW			Scaling		

(MRA), Wavelet reconstruction, design of decomposition and reconstruction filters for Haar, Daubechies and biorthogonal wavelets, Digital filter implementation of wavelets, Application examples

<u>- Applica</u>	tion examples		
Unit	Adaptive Digital Filters	(07 hrs)	COs Mapped –
III			CO2
Adaptiv	e Filter Structures, Minimum mean square criter	rion, LMS algorit	hm, Recursive
Least Sc	uare algorithm, Application Examples. Linear I	Prediction & Opti	mum Linear
Filters: I	Linear prediction, forward-backward linear pred	liction filters, solu	ition of normal
equation	s, Wiener Filters.		
Unit	Power Spectrum Estimation	(06 hrs)	COs Mapped –
IV			CO3
Nonpara	metric Methods and parametric Methods for Po	wer Spectrum Es	timation,
Minimu	m-variance spectral estimation, Eigen analysis A	Algorithms for Sp	ectrum
Estimati	on		
Unit	Application of Signal Processing	(07 hrs)	COs Mapped –
V			CO4
1. B	iomedical Applications		
2. A	udio Applications		

- 3. Telecommunication Applications (Radar)
- 4. Applications to astronomy

Text Books

1. K. Deergha Rao and MNS Swamy, "Digital Signal Processing Theory and Practice", Springer, 2018.

2. Sanjit K. Mitra, "Digital Signal Processing", 3/e, Tata McGraw-Hill Edition, 2006.

Reference Books

1. J.G.Proakis and D.G. Manolakis," Digital signal processing: Principles, Algorithm and Applications", 4th Edition, Prentice Hall, 2007..

2. S.Haykin, "Adaptive Filter Theory", 4th Edition, Prentice Hall, 2001. Steven M Kay, "Modern Spectral Estimation Theory and Application", Prentice Hall,1988.

					Streng	th of (CO-PO	D/PSC) Map	ping				
						PC)						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3								3	3
CO2	3	3	3		3								3	3
CO3	3	3	3	3	3								3	3
CO4	3	3	3	3	3								3	3
CO5	3	3	3	3	3								3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10			
2	Performance in Unit Tests (5 tests, one on each unit)	10			

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Total

20

T. Y. B. Tech. Pattern 2023 Semester: VI						
2302315B: FPGA Based System Design (Elective 3)						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Theory :03 hrs/week	03	Continuous Comprehensive				
-		Evaluation: 20 Marks				
		InSem Exam: 20 Marks				
		EndSem Exam: 60 Marks				
Prerequisite Courses, if a	ny: VLSI design technolo	ду				
Companion course, if any	y: -					
Course Objectives:						
0	nderstand basic architectur	e of FPGA				
2. To make the students technology.	Understand various param	eters of design abstraction used in IC				
3. To make the students U	Jnderstand importance of	FPGA for implementing FPGA based				

- 3. To make the students Understand importance of FPGA for implementing FPGA based system
- 4. To Study and apply various design algorithms for placement and routing.
- 5. To Acquire knowledge of sequential machine design styles.
- 6. To Study of latest SOC devices

Course Out	comes: On completion of the course, studer	nts will be abl	e to-
	Course Outcomes	Bloom's Level	
CO1	Demonstrate semiconductor IC design us	ing FPGA	3-Apply
CO2	Analysis of design rules and layout diagr	3-Apply, 4-Analysis	
CO3	Demonstrate working principle of power optimization	and energy	6-Design 4-Analysis
CO4	Analyze the performance of digital system	4-Analysis	
CO5	Explore latest trends in SOC devices	2-Understand	
	COURSE CONTENT	[S	•
Unit I	Introduction to System Design	(07 hrs)	COs Mapped - CO1
Design and F VLSI, FPGA	Basic concepts, Boolean Algebra, schemat FPGAs, the role of FPGAs, FPGA types, type Based system Design, goals and techniques Methodologies.	es of ASICS, I	FPGA Vs. Custom
Unit II	Chip Technology	(07 hrs)	COs Mapped - CO2

IC Technology, Economics, CMOS Technology overview, Power consumption, Hierarchical design, Design Abstraction, EDA tools. MOSFET model, parasitics, latch up, advanced transistor structures; Wire parasitics; Design rules, Scalable design rules, process parameters; stick diagrams, Layout design tools; Layout synthesis, layout analysis.

Unit III	Chip Construction	(08 hrs)	COs Mapped –
			CO3

The logic design process, Combinational Network Delay, Power and energy optimization, Logic implementation for FPGAs, Physical design for FPGAs, design of algorithms for Placement and Routing, Placement algorithms: Mincut, Eigenvalue. Routing algorithms: Left edge, clock routing, power routing.

Unit IV	Architecture	(07 hrs)	COs Mapped –
			CO4

The sequential machine design process, Sequential Design styles, rules for Clocking, Performance analysis.

Behavioral Design, Design methodologies and Design examples

Bena Horar B	esign, Design methodologies and Design er	lampies	
Unit V	Current State of the Field	(07 hrs)	COs Mapped –
			CO5

SOC, IP Design, Design methodology, System Modeling, Hardware Software Co-design, Application Domains, Study of latest SOC device (Zinq 7000), Create a Zynq Hardware design, Fundamentals of Zynq design in Xilinx SDK, Structure of processing Logic, Difference between Processing Logic (PL) and processing Systems(PS)

Text Books

FPGA Based System Design by Wanye Wolf, Pearson Publication.

Reference Books

1. Kamaran Eshraghian, "Principles of CMOS VLSI Design", Pearson Education

2. Rabey, Chandrakasan, "Digital IC Design", Pearson Publication.

													CO-	
													Map	ping
						PS	50						PS	50
	1	1	3	4	5	6	7	8	9	1	1	12	1	2
										0	1			
CO1	3	3	2	-	2	-	-	-	-	-	-	2	2	3
CO2	3	3	2	-	2	-	-	-	-	-	-	2	2	3
CO3	3	3	2	-	2	-	-	-	-	-	-	2	2	3
CO4	3	3	2	-	2	-	-	-	-	-	-	2	2	3
CO5	3	3	-	-	-	-	-	-	-	-	-	2	-	-

Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10			

2	Performance in LMS Tests (5 tests, one on each unit)		10
		Total	20

K. K. Wagh Institute of Engineering Education and Research, Nashik

(Autonomous from Academic Year 2022-23)

T. Y. B. Tech. E&TC Pattern 2023

ETC223015: Elective III: Circular Economy

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :03hrs/week	03	Continuous Comprehensive Evaluation: 20Marks
		InSem Exam: 20Marks
		EndSem Exam: 60Marks

Companion course, if any:

Course Objectives:

1. To provide students with exposure to real-time industrial environments, enabling them to understand current technologies, tools, and practices that are beyond classroom simulation.

2. To develop and enhance students' technical and managerial skills through hands-on experience, making them industry-ready professionals.

3. To foster the ability to apply academic knowledge to practical problems, including exposure toengineering ethics, responsibilities, and professional conduct.

4. To improve students' communication skills and documentation abilities through writing technical reports and project summaries based on industrial experiences.

5. To create an understanding of organizational structures, socio-economic factors, quality controlprocesses, and worker psychology in industrial setups.

Course	Dutcomes: On completion of the course, student	s will be able	to_			
Course	Course Outcomes		Bloom's Level			
CO1	Describe the key characteristics of a circular economy 1-Remember					
CO2	Comprehend the concept of circularity and conduct relevant 2- Underst research					
CO3	Use the principles of circularity for application to sustainable 3-Apply development					
CO4	Apply complexity aspects of circular economy for creating 3-App circular business models					
CO5	Apply the concept of circular economy to envi	ironmental	3-Apply			
	engineering problems	11.7				
	COURSE CONTENT	ſS	!			
Unit I	Introduction to Circular Economy	(04hrs)	COs Mapped – CO2			
economy Circular	Economy and its emergence, Economic and Ecol y, Replacing Linear economy by Circular Econor Economy, A differential - Linear Vs Circular Economy Characteristics of Circular Economy	ny, Developm	-			

Material recovery, Waste Reduction, reducing negative externalities, Explaining Butterfly diagram, Concept of Loops

Unit III Circular design, innovation and Assessment	(08hrs)	COs Mapped – CO1	
---	---------	---------------------	--

Zero waste: Waste Management in context of Circular Economy, Circular design, Research and innovation, LCA, Circular Business Models

Unit	Case Studies	(09hrs)	COs Mapped –
IV			CO3,CO4

Business models, Solid Waste Management / Wastewater, Plastics: A case study, EPR: polluters pay principle, Industrial symbiosis/ Eco-parks

Unit V	Legal and policy framework	(05hrs)	COs Mapped –
			CO3,CO4

Role of governments and networks, Sharing best practices, Universal circular economy policy goals, India and CE strategy, ESG

Text
Books

- 1. The Circular Economy A User's Guide Walter R Stahel Routledge; 1st Edition (24 June 2019)
- 2. Circular Economy: (Re) Emerging Movement Shalini Goyal Bhalla Invincible Publisher
- 3. The Circular Economy Handbook: Realizing The Circular Advantage Peter Lacy, Jessica Long, Wesley Spindler Palgrave Macmillan UK
- 4. Waste to Wealth: The Circular Economy Advantage Peter Lacy, Jakob Rutqvist Palgrave Macmillan

Reference Books

- 1. Towards Zero Waste: Circular Economy Boost, Waste to Resources María-Laura Franco-García, Jorge Carlos Carpio-Aguilar, Hans Bressers. Springer International Publishing 2019
- 2. Strategic Management and the Circular Economy Marcello Tonelli, Nicolo Cristoni, Routledge 2018.
- 3. Circular Economy: Global Perspective Sadhan Kumar Ghosh, Springer, 2020
- 4. The Circular Economy: A User's Guide Stahel, Walter R. Routledge 2019
- 5. An Introduction to Circular Economy Lerwen Liu, Seeram Ramakrishna, Springer Singapore 2021.

Online Resources

- 1. https://www.coursera.org/learn/circular-economy
- 2. <u>https://www.edx.org/course/circular-economy-an-introduction</u>
- 3. https://www.coursera.org/learn/sustainable-digital-innovation
- 4. <u>https://online-learning.harvard.edu/course/introduction-circular-economy?delta=0</u>
- 5. https://www.oecd.org/cfe/regionaldevelopment/Ekins-2019-Circular-Economy-WhatWhy-How-Where.pdf
- 6. https://ic-ce.com/product/principles-of-circular-economy/
- 7. https://ic-ce.com/product/circular-business-management/
- 8. https://ic-ce.com/product/bootcamp/ 9. http://ic-ce.com/journal-on-circular-economy/

				Strengt	th of (CO-P	O Maj	pping	5				CO-	PSO
													map	ping
						F	0						PS	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	-	-	2	2	1	-	-	-	2	-	1
CO2	3	3	-	3	-	-	2	1	-	-		3	-	-
CO3	3	2	3	-	2	2	3	-	-	-	-	2	1	1
CO4	3	3	3	2	1	1	3	1	2	2	2	2	1	-
CO5	3	3	2	2	-	-	3	1	-	1	-	3	-	1

Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Assignment:	10
	Assignment No. 1 - Unit 1 (10 Marks)	
	Assignment No. 2 - Unit 2 (10 Marks)	
	Assignment No. 3 – Unit 3(10 Marks)	
	Assignment No. 4 - Unit 4(10 Marks)	
	Assignment No. 5 - Unit 5(10 Marks)	
2	Quiz (Using LMS):	10
	Unit No. 1 (10 Questions - 10 Marks)	
	Unit No. 2 (10 Questions - 10 Marks)	
	Unit No. 3 (10 Questions - 10 Marks)	
	Unit No. 4 (10 Questions - 10 Marks)	
	Unit No. 5 (10 Questions - 10 Marks)	

	Т. Ү. В.	Tech.Pattern 2023 S	emester: II	
	23023	315D: Automotive Ele	ectronics	
Teaching	g Scheme:	Credit Scheme:	Examination S	cheme:
Theory : Practica	03 hrs/week l : NA	03	nprehensive Marks 20 Marks : 60 Marks	
	isite Courses, if any: Ba			cal engineering
	ntation system, control s			
_	ion course, if any: Fund Dbjectives:	uamentais of basic elec	cuomes	
system 2. To intr 3. At the system	ident should comprehen , batteries, ignition syste oduce about automotive end of the course, stuc s Dutcomes: On completi	ems, sensors and actuat telematics & invehicle lents are exposed to v	ors &other electric infotainment syst various automotive	cal systems tems e communication
		Course Outcomes		Bloom's Level
CO1	Explain the concept of systems.	of batteries, starting sys	stems, charging	2-Understand
CO2	Explain fuel injection of automotive applica	n, ignition systems, and tions.	l lightning system	2-Understand
CO3	system &control	ntal knowledge of inst		2-Understand
CO4	· ·	lematics and infotainm	ent systems in	2-Understand
CO5	1 1	of ECU and design app s using model base dev		3-Apply
		COURSE CONTEN	TS	
Unit I	Batteries & Charging	systems	(06 hrs)	COs Mapped - CO1
Batteries capacity	: Principles and constru and efficiency of batter ional aspect of alkaline	ies. Various tests on b		s of battery, rating
Starting its charac	System: Condition at stateristics. Principle & con	arting. Behavior of star nstruction of starter mo	otor. Starter Switch	nes.
	g System: Generation o		-	teristics. Armature

reaction. Third brush regulation. Cutout. Voltage & current regulators.

Unit II	Ignition systems and Lightning system	(06 hrs)	COs Mapped - CO2
	jection, Ignition Systems: Introduction, feedba	ck carburetor syst	
-	and multi-port or point fuel injection, fuel	-	
•	., Types, Construction & working of battery		
	ic ignition systems.	U	
Lighting	g System & Accessories: Insulated & earth 1	eturn systems. P	Positive & negative
•	stems. Details of head light & side light. Headl		
Electrica	al fuel-pump, Speedometer, Fuel, oil & temperat		, Wiper system
Unit	Automotive control system	(06 hrs)	COs Mapped –
III			CO3
	rain Control Systems: Air-Fuel Ratio Control, G	-	
	Transmission control, Cruise control: analog cr		
	d cruise control, traction control, antilock b		
0	control, control for lightning, wiper control		0 0 0
•	, Remote keyless entry and anti theft syste	ems, method of	improving engine
perform	ance		
-		(0(1))	
Unit IV Global automot	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assis	stance systems,	
Unit IV Global automot In vehic traffic a	Telematics & Infotainment systems positioning system, Geographical informat	ion systems, na stance systems, g systems in IVI, Routes, waypoin	CO4 avigation systems, GENEVI alliance,
Unit IV Global automot In vehic traffic a	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assis- ele infotainment : Introduction, use of operating nnouncement, Navigation : points of interest,	ion systems, na stance systems, g systems in IVI, Routes, waypoin	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped –
Unit IV Global automot In vehic traffic a position Unit V	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assis- ele infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, , traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs)	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5
Unit IV Global automot In vehic traffic a position Unit V ECU De	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assisted infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Communication	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU,	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas	Telematics & Infotainment systems positioning system, Geographical informat informat, informat ive vision systems, road recognition, driver assisted infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU &Automotive communication systems esign Cycle: V-Model development cycle, Communication is sis, and in body electronics.Communication is	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU CUs, Relevance of
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assisted infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicat	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assiste infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication as such as, CAN, LIN, Flex Ray, ODBII, N	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicat	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assis- le infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, , traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com- sis, and in body electronics.Communication is protocols, wireless LAN standards, commu- ions such as, CAN, LIN, Flex Ray, ODBII, Noment using MATLAB	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicat	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assiste infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication as such as, CAN, LIN, Flex Ray, ODBII, N	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COs Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicati Develop	Telematics & Infotainment systems positioning system, Geographical informat infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication is ions such as, CAN, LIN, Flex Ray, ODBII, Moment using MATLAB Text Books gation and intelligent transportation system- pro	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B,	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of bls for automotive DSI, Model Base
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicati Develop	Telematics & Infotainment systems positioning system, Geographical informat infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication is ions such as, CAN, LIN, Flex Ray, ODBII, Noment using MATLAB Text Books gation and intelligent transportation system- pro SAE,USA,1988	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B, gress in technolog	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive DSI, Model Base
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicati Develop 1. Navig Jurgan, 2. Unde	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assiste iel infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication such as, CAN, LIN, Flex Ray, ODBII, Noment using MATLAB Text Books gation and intelligent transportation system- pro SAE,USA,1988 erstanding Automotive electronics, William B R	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B, gress in technolog	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive DSI, Model Base
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicati Develop	Telematics & Infotainment systems positioning system, Geographical informat infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication is ions such as, CAN, LIN, Flex Ray, ODBII, Moment using MATLAB Text Books gation and intelligent transportation system- pro SAE,USA,1988 erstanding Automotive electronics, William B R: 2012	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B, gress in technolog	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive DSI, Model Base
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicati Develop 1. Navi Jurgan, 2. Unde edition-	Telematics & Infotainment systems positioning system, Geographical informat ive vision systems, road recognition, driver assiste iel infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, , traffic info, GLONASS, GNSS, RTK, GPS & S ECU &Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication such as, CAN, LIN, Flex Ray, ODBII, Noment using MATLAB Text Books gation and intelligent transportation system- pro SAE,USA,1988 erstanding Automotive electronics, William B Rie 2012 Reference Books	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B, gress in technolog	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive DSI, Model Base
Unit IV Global automot In vehic traffic a position Unit V ECU De on chas internet applicat Develop 1. Navi Jurgan, 2. Unde edition-	Telematics & Infotainment systems positioning system, Geographical informat infotainment : Introduction, use of operating nnouncement, Navigation : points of interest, traffic info, GLONASS, GNSS, RTK, GPS & S ECU & Automotive communication systems esign Cycle: V-Model development cycle, Com sis, and in body electronics.Communication is protocols, wireless LAN standards, communication is ions such as, CAN, LIN, Flex Ray, ODBII, Moment using MATLAB Text Books gation and intelligent transportation system- pro SAE,USA,1988 erstanding Automotive electronics, William B R: 2012	ion systems, na stance systems, g systems in IVI, Routes, waypoin SBAS.) (06 hrs) (06 hrs) ponents of ECU, interface with E0 nications protoco MOST, IE, D2B, gress in technolog ibbons, Butterwor	CO4 avigation systems, GENEVI alliance, ts, Dead reckoning COS Mapped – CO5 Examples of ECU CUs, Relevance of ols for automotive DSI, Model Base

					Streng	gth of	CO-P	O Map	ping					
							PO						PSC)
	1	2	3	4	5	6	7	8	9	1	1	12	1	2
										0	1			
CO1	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	3	2	-

(Guidelines for Continuous Comprehensive Evaluation of Theory	y Course
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10
2	Performance in Unit Tests (5 Tests, one on each unit)	10
	Total	20

	T Y. B. 7	Fech.Pattern 2023	Semester: V	I		
	2302316A: I	Lab work in Micr	owave Engine	ering		
Teachi	ing Scheme:	Credit Scheme:	Examination	n Scheme:		
Practio	cal : 02hrs/week	01	Practical Exam: 25 Marks TW: 25 Marks			
Prereq	uisite Courses, if any: M	echatronics				
Course	Objectives:					
	understanding of microwa work analysis.	ive waveguides, pa	ssive & active	devices, tubes and		
2. To	understand and handle mid	crowave equipmen	t.			
3. To	understand microwave me	easurements				
Course	e Outcomes: On completion	on of the course, st	udents will be a	ible to-		
	Course Outc	omes	Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)		
CO1	Operate microwave devic components.	es and	Apply (L3)	Mechanism (P4)		
CO2	Analyze and evaluate mic		Analyze (L4),	-		
002	characteristics and parameter	eters.	Evaluate (L5)	Response (P5)		

	List of Laboratory Experiments	
Sr. No.	Laboratory Experiments	CO Mapped
1	Familiarization with the Microwave Laboratory Apparatus	1
2	To Study the Characteristics of Reflex Klystron	2
3	To Plot the V-I Characteristics of Gunn Diode	2
4	To Study the Basic Properties of E-plane Tee, H-plane Tee and Magic Tee	2
5	To Measure the Scattering Parameters of Circulator	2
6	To study the characteristics of multi-hole directional coupler by measuring the following parameters: coupling factor and directivity of coupler	2
7	To Study the Properties of Magic Tee and Determining the Scattering Parameters of Magic Tee	2
8	To plot the Radiation pattern and Determining Gain of a Pyramidal Horn Antenna	2
	Guidelines for Laboratory Conduction	

- 1. Teacher will brief the given experiment to students, its procedure, observations calculation, and outcome of this experiment.
- 2. Equipment and kits required for the allotted experiment will be provided by the lab assistants using SOP.
- 3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistants.
- 4. After performing the experiment students will check their readings, calculations from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. R1: Timely completion of experiment (10 Marks)
- 2. R2: Understanding of experiment (10 Marks)
- 3. R3: Presentation / clarity of journal writing (10 Marks)

4. Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of term work.

		T Y. B. Tech.Pa	attern 2023	Semester: V	I		
	23	02316B: Lab wo	rk in Proce	ess Instrument	ation		
Teachi	ing Scheme:	Credit Scheme:	Examinat	ion Scheme:			
Practio 02hrs/		01	Continuous Comprehensive Practical Exam: 25 Marks TW: 25 Marks				
Prereq	uisite Courses,	if any: Mechatro	onics				
 To d instr autor To g impl Prog To d with 	umentation sys mation of indust gain practical e ementing fund rammable Logic evelop proficier in ladder logic to	tems, including rial processes xperience in des amental logic g c Controllers (PLC	their function igning and gates and Cs). C timer fur l control pr	tion in data a simulating la basic motor nctions (On-del ograms for auto			
	Со	urse Outcomes		Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)		
CO1	ladder diagran	implement ba logic functions u ns, including fu motor control circ	using PLC ndamental	3- Apply	4-Manipulation		
CO2	Develop and programs utili	analyze PLC lac zing timers to i rol for industrial a	lder logic implement	4- Analyzing	4-Manipulation		

	List of Laboratory Experiments				
Sr.	Laboratory Experiments	CO Mapped			
No.					
1	Design and simulate PLC ladder logic circuits that effectively implement the fundamental Boolean logic gates: NOT, AND, and OR. Demonstrate the truth table behavior of each gate using the PLC simulation environment. https://plc-coep.vlabs.ac.in/	C01			
2	Develop and simulate a PLC ladder logic program to control an output device (e.g., a motor or indicator light) using two momentary pushbuttons: one for starting the device and another for stopping it. The	CO1			

	output should remain active after the start button is released until the	
	stop button is pressed. Verify the correct start/stop operation through	
	PLC simulation.	
	https://plc-coep.vlabs.ac.in/	
3	Design and simulate a PLC ladder logic program that uses a single	
	momentary push button to toggle the state of an output device (e.g., a	
	light). Each press of the button should switch the output from its	
	current state (ON to OFF, or OFF to ON). Demonstrate the toggling	CO1
	functionality through PLC simulation.	
	https://plc-coep.vlabs.ac.in/	
4		
4	Develop and simulate a PLC ladder logic program where an output	
	device (e.g., a conveyor belt) turns ON a specified time delay after an	
	input signal (e.g., a sensor activation) becomes active. Demonstrate and	CO2
	verify the programmed time delay using the PLC simulation	001
	environment.	
	https://plc-coep.vlabs.ac.in/	
5	Design and simulate a PLC ladder logic program where an output	
	device (e.g., a cooling fan) remains ON for a specific duration after the	
	input signal (e.g., a process completion signal) becomes inactive.	
	Demonstrate and verify the programmed off-delay using the PLC	CO2
	simulation environment.	
	(Virtual lab simulation)	
6	Develop and simulate a PLC ladder logic program that utilizes a	
0	retentive timer to accumulate the duration for which an input signal is	
	active. The accumulated time should be retained even if the input signal	
	becomes inactive and should only reset upon a separate reset condition.	GO •
		CO2
	Demonstrate the retentive timing functionality and the reset operation	
	using the PLC simulation environment.	
	https://plc-coep.vlabs.ac.in/	
7	Design and simulate a PLC ladder logic diagram for a Direct-On-Line	
	(DOL) starter for a three-phase induction motor. The circuit should	
	include a start pushbutton, a stop pushbutton, a motor contactor, and	
	overload protection. Demonstrate the starting and stopping of the	CO2
	motor, as well as the response to an overload condition, within the PLC	
	simulation environment.	
	https://plc-coep.vlabs.ac.in/	
8	Design and simulate a PLC ladder logic diagram to control a simplified	
	traffic light system for a single intersection. The traffic light sequence	
	should follow a standard pattern: Green for a set duration, followed by	
	Yellow for a shorter duration, and then Red for a specific duration.	CO2
	Implement this cycle continuously in the PLC simulation environment.	
	You should clearly define the time durations for each light.	
	(Virtual lab simulation)	
	Guidelines for Laboratory Conduction	
1	Teacher will brief the given experiment to students, its procedure, observ	ations
	alculation, and outcome of this experiment.	
	. Equipment and kits required for the allotted experiment will be provided	by the lab
as	ssistants using SOP.	
3.	Students will perform the allotted experiment in a group (two students in	each group)
1	- • •	

under the supervision of faculty and lab assistants.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

5. R1: Timely completion of experiment (10 Marks)

6. R2: Understanding of experiment (10 Marks)

7. R3: Presentation / clarity of journal writing (10 Marks)

8. Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of term work.

Practical :02hrs/week	01	Practical: 25 MarksTerm work: 25 Marks
Prerequisite Courses, if an	y: Microcontroller and Embedde	d processor
Companion course, if any:	Advanced Processor	

Cours	e Outcomes: On completion of the course, students will be	e able to-								
	Course Outcomes	Bloom's Level (Cognitive domain)	(Psy	om's Level cchomotor lomain)						
CO1	Interface different devices to STM32F4xx microcontroller	3-Apply	2-N	Ianipulation						
CO2	Write program for different devices in embedded C using CUBE IDE	3-Apply	ply 2-Manipula							
	List of Laboratory Experiments / Assignments									
Sr. No.										
1	No. Mapped 1 Develop a digital clock system using the STM32F4xx microcontroller and a Seven Segment LED display. The microcontroller can retrieve real-time data from an external RTC (Real-Time Clock) module or an internal timer to display hours, minutes, and seconds on the Seven Segment display CO1,CO2									
2	2 Create a wireless keyboard interface system where keystrokes from a wireless keyboard are transmitted via UART to the STM32F4xx CO1, microcontroller.									
3	Utilize the on-chip ADC of STM32F4xx to interface with various sensors such as temperature sensors (e.g., LM35), light sensors (e.g., LDR), or pressure sensors.									
4	Implement PWM-based speed and direction control w microcontroller, precise control over the motion of robot		F4xx	CO1,CO2						

5	Implement a greenhouse monitoring system where the STM32F4xx microcontroller with DHT11 sensors is used to measure temperature and humidity levels inside the greenhouse.	CO1,CO2							
6	Implement gesture recognition systems using the STM32F4xx microcontroller and MPU6050 sensor to detect and interpret human gestures and movements.	CO1,CO2							
7	Develop a distance measurement and obstacle avoidance system using the STM32F4xx microcontroller and HC-SR04 sensor for robotics platforms, drones, or autonomous vehicles.	CO1,CO2							
8	Develop a smart lighting system using the STM32F4xx microcontroller and LDR sensor to automatically adjust the brightness of indoor or outdoor lighting based on ambient light levels.	CO1,CO2							
9	Implement obstacle detection system using STM32L452RE (Nucleo Board) microcontroller and an IR sensor.	CO1,CO2							
	Guidelines for Laboratory Conduction								
1. Teacher will brief the given experiment to students, its procedure, observations calculation, and outcome of this experiment.									
	pparatus and equipment required for the allotted experiment will be provided by t ssistants using SOP.	he lab							
3. S	tudents will perform the allotted experiment in a group (two students in each grou upervision of faculty and lab assistants.	p) under the							
 After performing the experiment students will check their readings, calculations. After checking they have to write the conclusion of the final result. 									
	Guidelines for Student's Lab Journal								
	-up should include title, aim, and diagram, working principle, procedure, observa lations, conclusion and questions, if any.	tions, graphs,							
	Guidelines for Term work Assessment								
2. R	1: Timely completion of experiment (10 Marks) 2: Understanding of experiment (10 Marks) 3: Presentation / clarity of journal writing (10 Marks)								
Total 3	 R3: Presentation / clarity of journal writing (10 Marks) Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of term work. 								

Strength of CO-PO Mapping											CO- Map			
	РО											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	3	-	-	-	-	-	-	3	3	3
CO2	3	2	-	-	3	-	-	-	-	-	-	3	3	3

		Fech. Pattern 20238 rk in Neural Netwo	Semester: VI ork and Fuzzy Control				
Teaching	Scheme:	Credit Scheme:	Examination Scheme:				
Practical	: 02hrs/week	01	Practical : 25 Marks Term work: 25 Marks				
Prerequis	site Courses, if any: Fur	damental of Compu	ting				
Course O	utcomes: On completion	n of the course, stude	ents will be able to-				
		Bloom's					
CO1	-	Describe the concept of fuzziness involved in various systems Apply the knowledge of fuzzy set theory.					
CO2	Understand the diffe Explore different neu		ning and programming, ures	L2			
CO3	Explore practical app	lications of Neural N	letworks (NN).	L2			
CO4	Explain the fundame neural networks.	Explain the fundamental principles of competitive learning in					
CO5	Describe the basics operators, and their a	0 0	thms, the use of GA	L2			

List of Laboratory Experiments / Assignments								
Sr. No.	v i B							
1	A university wants to analyze the enrolment of students on two courses, Course A and Course B, to identify: Students enrolled in both courses. Students enrolled in either course. Students enrolled only in Course A. Students not enrolled in Course A. Students enrolled only in Course B. Students did not enroll in Course B.	CO1						
2	To design and implement models the tipping behaviour of a customer based on the quality of service and food at a restaurant. The system will determine the appropriate tip percentage, considering the subjective and imprecise nature of human decision-making in evaluating service and food quality. Service Quality: A fuzzy input variable representing the quality of service, categorized as "Poor," "Good," or "Excellent." Food Quality: A fuzzy input variable representing the quality of food, categorized as "Bad," "Decent," or "Delicious". "Tip Percentage: representing the recommended tip percentage, categorized as "Low," "Medium," or "High."	CO1						

3	To design and implement a system for controlling the temperature in a room. The system will adjust the heating or cooling based on the current room temperature and user preferences. The goal is to maintain a comfortable indoor environment while demonstrating scenarios. IF the Current Temperature is Cold AND User Preference is Warm THEN Increase Heating. IF Current Temperature is Hot AND User Preference is Cool THEN Increase Cooling. IF the Current Temperature is Comfortable THEN Maintain Settings.	CO3
4	A company wants to allocate employees to projects based on their skills (fuzzy relation R) and project requirements (fuzzy relation S). However, there are constraints such as limited working hours, budget restrictions, and employee availability. The goal is to determine the best employee-project assignments that maximize skill utilization while satisfying the constraints.	CO2
5	Traditional washing machines lack intelligent control mechanisms to optimize washing cycles based on fabric type and dirt levels. This results in inefficient use of resources such as water, electricity, and detergent, and may also lead to suboptimal cleaning or potential damage to delicate fabrics. The aim is to design a controller that can intelligently adjust the washing cycle parameters (e.g., wash time, water temperature, agitator speed, and spin speed) based on the type of fabric and the level of dirt detected. Fabric Type: Categorize fabrics into types such as Delicate, Normal, and Heavy-duty. Dirt Level: Measure the dirt level as Low, Medium, or High. Wash Time: Adjust the duration of the wash cycle. Water Temperature: Control the temperature of the water (Cold, Warm, Hot). Agitator Speed: Adjust the speed of the agitator (Low, Medium, High). Spin Speed: Control the speed of the spin cycle (Low, Medium, High).	CO2
6	To design and implement a network that simulates a digital circuit capable of performing the XOR (exclusive OR) operation on two binary inputs. The XOR operation is a fundamental logic gate in digital electronics and simulating it using a network will help in understanding the underlying principles of digital logic and network-based implementations. Two binary inputs, A and B, each of which can be either 0 or 1.A single binary output, Y, which represents the result of the XOR operation on inputs A and B. The XOR operation yields 1 if the inputs are different (A=0, B=1 or A=1, B=0) and 0 if the inputs are the same (A=0, B=0 or A=1, B=1).	CO3
7	To design and implement a network that simulates a digital circuit capable of performing the AND operation on two binary inputs. The AND operation is one of the basic logic gates in digital electronics and simulating it using a network will help in understanding the foundational principles of digital logic and	CO3

	,,	
	network-based implementations. Two binary inputs, A and B, each of which can be either 0 or 1. A single binary output, Y, which represents the result of the AND operation on inputs A and B. The AND operation yields 1 only if both inputs are 1 (A=1, B=1); otherwise, the output is 0.	
8	To design and implement an unsupervised learning algorithm that simulates associative memory, a type of neural network capable of storing and recalling patterns based on similarity. Associative memory is a fundamental concept in neural networks and cognitive computing, and its implementation will help in understanding how unsupervised learning can be used for pattern recognition and retrieval tasks.	CO3
9	To design and implement a system that accurately identifies the closest matching word from a predefined dictionary when given a misspelled or incorrect word. The system should handle various types of errors, such as insertion, deletion, substitution, and transposition of characters, and efficiently return the most likely correct word. The solution should be robust, scalable, and capable of processing inputs with different levels of distortion or incompleteness.	CO5
	Guidelines for Laboratory Conduction	
•1. Us	e of coding standards and Hungarian notation, proper indentation and co	omments.
Opera	ting System recommended:- Linux/Windows or its derivative	
	Guidelines for Student's Lab Journal	
Stude	nt's lab journal should contain following related things -	
Title,	Objectives, Hardware/ Software requirement, Theory, and Conclusion	
	Guidelines for Term work Assessment	
• R2 • R2 Total	 Timely completion of experiment (10 Marks) Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) marks for each experiment and average marks of all experiment experiment into 25 marks of term work. 	nents will be

T. Y. B. Tech. E&TC Pattern 2023

2302377A: MDM4: Cyber Crime Administration

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :03hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks

Prerequisite Courses, if any: Introduction to Computer Science / Programming, Python, C/C++, Introduction to Cyber Security / Information Security Fundamentals

Companion course, if any: Cybersecurity Laws, Ethics & Policy

Course Objectives:

- 1. Understand the basic concepts and types of cyber-crimes.
- 2. Learn about cyber laws and the legal framework related to cyber-crimes.
- 3. Explore investigation processes and tools used in cyber-crime cases.
- 4. Promote cyber safety and preventive measures among users.
- 5. Develop awareness of the role of cyber-crime administration and career opportunities.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level				
CO1	Define and describe the nature, types, and motives behind	1- Remember,				
	cyber-crimes.	2- Understand				
CO2	Identify and explain the key sections of the IT Act and legal	2- Understand,				
	procedures.	3- Apply				
CO3	Apply basic cyber investigation techniques and use common	3- Apply				
	forensic tools.					
CO4	Analyze common cyber threats and suggest appropriate safety	4-Analyze				
	practices.					
CO5	Examine administrative roles and preventive strategies in	2- Understand,				
	cyber-crime management.	4-Analyze				
COURSE CONTENTS						

OURSE CONTENTS

Unit I	Introduction to Cyber Crime	(07hrs)	COs Mapped
			CO1

What is Cyber Crime, Types of Cyber Crimes, Cyber Criminals and Their Motives, History and Evolution of Cyber Crime, Difference between Traditional Crime and Cyber Crime, Common Cyber Crime Terminologies, Introduction to Cyber Laws, Importance of Cyber Crime Awareness.

Unit II	Types of Cyber Crimes	(08hrs)	COs Mapped – CO2
---------	-----------------------	---------	---------------------

Hacking, Phishing and Email Scams, Identity Theft, Cyber Bullying and Harassment, Online Fraud and Financial Scams, Child Exploitation and Pornography, Cyber Terrorism, Cyber Crimes Against Women.

Unit III	Cyb	er La	ws an	d Lega	al Fra	mewo	ork			(07h)	rs)	CO: CO:	s Map 3	ped -
Introduc Agencie of the A	es, Cyl	ber Fo	rensic	s and	Legal	Evide	nce, A	Arrest	and In	vestig	ation F	Procedu	ures, R	lights
Unit IV		Cyber Crime Investigation and Tools(07hrs)COCOCOCO								s Map 4	ped -			
Steps in Evidenc Writing	e, En	nail an	d IP T	rackin	ng, So	ocial N	/ledia	Invest	igatio	ns, To	ols for	0	0	isics,
Unit V		Cyb	er Saf	fety aı	nd Ad	minis	tratio	n		(07h	rs)	CO: CO:	s Map 5	ped -
Safe Bro Crime, I Preventi Text Bo	Role c ion Ti	of Gov	ernme	ent in C	Cyber	Safety	, Awa	arenes	s Cam	paigns	•	-	-	-
 Cyb Cyb Prev Finance 	er Cr vention	ime in of C	1 Indi yber C	a by D Crime a	Dr. M. and Fi wapna	aud N	lanage an		by Ind	lian In	stitute	of Ba	nking	and
 Info Secu A. C Info Krag 	pectiv rmatio urity in Dliver, rmatio gBroth	ves by on Wa n the I Creat on Sec ny, 1st	Sumit rfare a Digital e Spac curity Editio	Belap and Se Age: Ce Inde Gover on, Wi	oure a curity Socia ependenance iley Pu	nd Nir by Do l Med ent Pu c, Guio ublicat	na Goo prothy ia Sec blishi dance tion. TEL L	dbole, F. De curity ng Pla for In ink	Wiley enning Fhreat tform	s and	Pvt. L son W Vulne	.td. esley rabiliti	es by]	
Cyber C	rime	Admii											DO	
				Streng	un of (-	ping					map	PSO ping SO
	PSO 1 2 3 4 5 6 7 8 9							9	10	11	12	- PS	-	
CO1	3	2	-	-	-	-	-	1	-	-	-	12	-	-
CO2	3	2	-	_	-	3	-	3	-	1	-	-	-	-
CO3	3	2	3	3	3	-	-	-	1	1	-	2	-	-
CO4	3	2	2	2	2	2	2	-	-	-	-	3	-	-
CO5	2	2	2	2	-	3	2	2	2	2	1	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
No.						
1	Assignment:	10				
	Assignment No. 1 - Unit 1 (10 Marks)					
	Assignment No. 2 - Unit 2 (10 Marks)					
	Assignment No. 3 – Unit 3 (10 Marks)					
	Assignment No. 4 - Unit 4 (10 Marks)					
	Assignment No. 5 - Unit 5 (10 Marks)					
2	Quiz (Using LMS):	10				
	Unit No. 1 (10 Questions - 10 Marks)					
	Unit No. 2 (10 Questions - 10 Marks)					
	Unit No. 3 (10 Questions - 10 Marks)					
	Unit No. 4 (10 Questions - 10 Marks)					
	Unit No. 5 (10 Questions - 10 Marks)					

Т. Ү	A. B. Tech. Pattern 2022	Semester: V						
2302317B: MDM4: Deep Learning								
Teaching Scheme:	Credit Scheme:	Examination Scheme:						
Theory :03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks						
Prerequisite Courses, if an Applications.	y: Machine Learning for E	Engineering and Science						
Companion course, if any	: NA							
I I		methodologies. s, and analyze their complexity and						

Course	Outcomes: On completion of the course, studen	ts will be able to				
	Course Outcomes	Bloom's Level				
CO1	Explain the concepts of deep learning and its	frameworks.	2-Understand			
CO2	Describe various deep learning architectur activation functions, batch normalization, an prevent overfitting.	-	2-Understand			
CO3	CO3 Identify and apply deep learning architectures, specifically CO3 Convolutional Neural Networks, to computer vision applications.					
CO4	CO4 Explain and apply Recurrent Neural Networks (RNNs) and related architectures like LSTMs and GRUs for Natural Language Processing (NLP).					
CO5	Apply deep learning methodologies to relevant and applications in computer vision and nat processing.		3-Apply			
	COURSE CONTENT	TS				
Unit	Introduction to Deep Learning and	(07 hrs)	COs Mapped -			
Ι	Frameworks		CO1			
Deep Le	earning Basics: Intro, History, capabilities, the p	erceptron, Multi	-Layer Perceptron,			
	chitecture. Tensor Flow, Creating and Manipula	U	-			
	perations, Placeholder Tensors, Managing M					
	ng the Logistic Regression Model in Tensor	Flow, Logging	and Training the			
Logistic	Regression, Introduction to Keras, PyTorch.					

Unit II	Deep Learning Architecture	(07 hrs)	COs Mapped - CO2		
types of of Neur	nd Depth of Neural Networks, Different Activations, Overfitting and generalization., Dropout, real Networks, Restricted Boltzmann Machines	gularization Uns	supervised Training		
Applica			1		
Unit III	Computer Vision	(08 hrs)	COs Mapped – CO3		
Motivat (CNNs) AlexNet normaliz	of optimizations (ADAM, SGDM, RMS pro- ion, Layers, Filters, Parameter sharing, Regulariz , convolution, pooling and its variations, differen- t, VGG, PlacesNet, DenseNet, training a Cl zation, hyperparameter tuning . Popular CNN	zation, Convoluti nt deep CNN arc NNs: weights i	on neural networks chitectures - LeNet, nitialization, batch		
Applica					
Unit IV	Natural Language Processing	(07 hrs)	COs Mapped – CO4		
	l It Neural Networks, Bidirectional RNNs, Enco	l der-decoder sea			
	tures - BPTT for training RNN, Long Short-T				
	STM, GRU, introduction to Generative Adversar	•			
Unit V	Case Study and Applications	(07 hrs)	COs Mapped – CO5		
•	er Vision: Image Classification, Image net- Deter	ction-Audio Way			
-	ge Processing: Sentimental Analysis, Text prepro				
	Text Books				
1. Nikhi	l Buduma, "Fundamentals of Deep Learning Des	igning Next-Gen	eration Machine		
	nce Algorithms", 1st Edition, O'REILLY.				
	ael Nielsen, "Neural Networks and Deep Learnir				
	oodfellow, YoshuaBengio and Aaron Courville,				
	Patterson, Adam Gibson "Deep Learning: A Pract	titioner's Approa	ch", O'Reilly		
Media.	P. Murphy "Machine Learning: A Probabilistic	Donomostivo" Th	AMIT Dragg		
	Alpaydin,"Introduction to Machine Learning", "	▲			
	erto Michelucci "Applied Deep Learning. A Case				
	anding", Deep Neural Networks" Apress, 2018.	bused rippioner	1.0		
<u>enuers</u>	Reference Books				
1. Good	fellow. I., Bengio.Y., and Courville, A., "Deep Le	earning". MIT Pr	ess.		
	p, C.M., "Pattern Recognition and Machine Lear	-			
3. Satish Kumar, "Neural Networks: A Classroom Approach", Tata McGraw-Hill					
J. Dutibi					
Educatio					
Education MOOC	/ NPTEL Courses:				
Education MOOC 1. NPTE	/ NPTEL Courses: EL Course on "Deep Learning", by Prof. Prabir K		IT Kharagpur.		
Education MOOC 1. NPTE Link of t	/ NPTEL Courses: EL Course on "Deep Learning", by Prof. Prabir K the Course: <u>https://nptel.ac.in/courses/106105215</u>	5	Ci		
Education MOOC 1. NPTE Link of 2. NPTE	/ NPTEL Courses: EL Course on "Deep Learning", by Prof. Prabir K	5 Sudarshan Iyeng	ar, Prof Sanatan		

Strength of CO-PO Mapping	CO-PSO
---------------------------	--------

													Map	ping
	PSO								PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	-	2	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	2	-	-	-	-	-	-	-	-	-
CO3	3	3	2	-	2	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	2	-	-	-	-	-	-	-	-	2
CO5	3	3	2	-	2	-	-	-	-	-	-	-	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10				
2	Performance in Unit Tests (5 tests, one on each unit)	10				
	Total	20				

	T. Y. B. Tech. Pattern 2023 Semester:VI						
	ETC	223018: OEC: Digit	al Marketing				
Teachi	ng Scheme:	Credit Scheme:	Examination Sc	heme:			
Theory	v:02 hrs/week	02	Continuous Con	-			
			Evaluation: 50 N				
emphasiz including campaigr as voice s	This course provi ting its importance in t the use of platform as. Emphasis is placed search and chatbots. The experience in creating	the modern era. The is like Facebook, Ir on understanding en prough case studies a	course explores so astagram, and Lin aerging trends in di nd practical activiti	cial media strategies, kedIn for marketing gital marketing, such ies, students will gain			
Prerequi	site Courses, if any: k		0 0				
-	Objectives:						
website 3. To kno	ke them aware about es for Digital Marketin ow the recent trends in Outcomes: On comp	g. Digital Marketing.					
	_	Course Outcomes		Bloom's			
				Level			
CO1	Explain the importation era.	nce of Digital marke	ting in upcoming	2-Understand			
CO2	Design websites usi explore it fordigital	ng free tools like Wo marketing.	rdpress and	3-Apply			
CO3		ords for a website &		3-Apply			
CO4	2-Understand						
CO5	Marketing in real life. Marketing in real life. CO5 Explain the importance of recent trends in digital marketing. 2-Understand						
		COURSE CONT	ENTS				
Unit I	Introduction to Dig	gital Marketing	(05 hrs)	COs Mapped - CO1			

What is digital marketing?, Importance of digital marketing, Difference between traditional and digital marketing, Discuss the recent trends and current scenario of the industry ,Digital marketing has been a tool of success for companies, Use digital marketing to increase sales, Case studies on digital marketing strategies.

TT . • 4 TT		$(0.71\dots)$	
Unit II	Website Planning and Creation	(05 hrs)	COs Mapped -
			CO2
	Buying a Domain, Core Objective of W		0
	Design of Products & Services Page, Stra		
0	e, Google Analytics Tracking Code, De	esigning Wordpro	ess Website. Mobile
•	Website, Payment Gateway like UPI,		
e-Comm			
Unit III	Search Engine Optimisation (SEO)	(05hrs)	COs Mapped –
			CO3
	tion to Search Engine Optimization, How d	•	10
	t research, keyword research, meta tags, O	ff-page SEO – lin	nk building ,Keyword
Research	h, Factors affecting the rank of a webpage.		
Unit IV	Search Engine Marketing and	(05 hrs)	COs Mapped –
Unitiv	Search Engine Marketing and S	(05 1118)	COs Mappeu –
			04
Adwords Demogra Major So	of the Google Ads platform and its al s, Ad Creation, Site & Keyword Targeting aphic Targeting, Google Keyword Planner, ocial Media Platforms for Marketing, Face ng, LinkedIn Advertising, Email Marketing.	B to C Perspectiv	CPM-based Accounts, ve, B to B Perspective,
Unit V	Upcoming Trends in Digital	(04 hrs)	COs Mapped –
	Marketing		CO5
	t, OTT Platforms, Mob-Ad, No Click Searcl Visual Search, Online Reviews, Automated ing.	-	-
	Text Books		
1. Cory R Advertisin	abazinsky, "Google-Ad words for Beginner	s: A Do-It-Yourse	elf Guide to PPC
2. Oliver.	J Rich, "Digital Marketing"		
3. Jan Zin	nmerman and Deborah, "Social Media Mark	teting All-In-One	for Dummies".
	die, "Email Persuasion: Captivate and Enga ity and Generate More Sales With Email Ma	0	e, Build

Reference Books

1. Prof. Seema Gupta, "Digital Marketing", Mcgraw Hill Publications

2. Judy Strauss, Adel Ansary, Raymond Frost, Prentice Hall, "E- Marketing

3. Cecilia Figueroa, "Introduction To Digital Marketing 101", BPB Publications.

	Strength of CO-PO Mapping								CO-	PSO				
									Map	oping				
	РО									PS	SO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
CO2	2	2	2	-	3	-	-	2	3	-	-	3	-	-
CO3	2	-	-	-	-	-	-	-	3	3	-	3	-	-
CO4	2	-	-	-	-	-	-	2	3	-	-	3	-	-
CO5	2	-	-	-	-	-	-	-	3	-	-	3	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	25				
2	Five Activities on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	25				
	Total	50				

	T. Y. B. '	Tech.Pattern 2023 Semest	er: VI	
		2302319: Web Design		
Teachi	tion Scheme:			
Tutoria	al :01 hrs/week	01		
Prerequ	uisite Courses, if any: Ba	asics of Internet		
Compa	nion course, if any: NA			
1. T 2. T 3. T to	o introduce the fundaments familiarize students with	f CSS and HTML. es creation using JAVA scri ntal concepts of UI and UX, n commonly used UI/UX de on of the course, students w	to explain th sign tools an	eir principles, and d software.
		Course Outcomes		Bloom's
	Eveloie UTML and C	Level		
CO1	Explain HTML and C Explain Java script fur	Understand		
CO2 CO3	Understand			
		COURSE CONTENTS		
Unit I	Introduction to HTMI	& CSS	(05hrs)	COs Mapped - 1
documer Breaks, Style Sh ,Workin	nt ,Creating an HTML do HTML Tags, Introduction leet , CSS Properties ,CSS	ITML,HTML Documents, E cument, Mark up Tags, He n to Cascading Style Sheets: S Styling(Background, Text CSS Id and Class, Box Mod fargin properties)	ading-Parag Concept of Format, Con	raphs , Line CSS , Creating trolling Fonts)
Unit II	COs Mapped - 2			
	1 0	l operators, objects, java scri	-	
arrays, r Unit III	Introduction to UI/UX	tivity to web pages, concept C Design	of java scrip (03 hrs)	COs Mapped - 3
	on and differences betwee	en UI and UX, UX Design P	/	

Text Books

1. Kogent Learning Solutions, "HTML, JavaScript, PHP, Java, JSP, XML and AJAX" Black Book, Dreamtech Press

2. Thomas Powell and Fritz Schneider, "JavaScript 2.0: The Complete Reference",

2ndEdition, McGraw Hill

Reference Books

1.Jon Duckett, "JavaScript & J Query: Interactive Front-End Web Development", John Wiley & Sons.

2. David Flanagan, "JavaScript: The Definitive Guide", 7 th Edition, O'Reilly Media.

3. Mike Mackgrath, "Javascripts in Easy Steps" Dreamtech Press

Strength of CO-PO/PSO Mapping (Sample):

Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is mapped.

Each Course Outcome addresses a sub-set of POs and PSOs to varying levels.

(Strengths: 1- Low, 2 – Medium, 3 - Strong)

Strength of CO-PO Mapping													CO-PSO		
														Mapping	
	РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2	2	-	-	-	-	-	-	-	-	-	
CO2	3	3	2	2	2	-	-	-	-	-	-	-	-	-	
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	

TY B. Tech. Syllabus 2023 Course

Project Phase 1

Project Phase 1 (2302320)-Credits: 01 Teaching Scheme: Practical 2 Hrs/week Examination Scheme: TW: 50Marks Project Phase 2(ETC224009): Credits: 04 Teaching Scheme: Practical 8 Hrs/week Examination Scheme: OR: 50Marks, TW: 100 Marks

Prerequisites for the course: Based on knowledge of all subjects

Structures will be able to: 1 Identify specification of the problem. 2 Structure the problem. 3 Identify the appropriate methodology to solve the problem. 4 Define the methodology to solve the problem. Lear-ming objective for CO2 Students will be able to: 1 Adapt the vital skills of compromise and collaboration. 2 Construct , analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Lear-ming objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Lear-tis will be able to Implement the selected methodology to solve the problem. 2 Implement the selected methodology to solve the problem. 3 Select the correct software for simulation and programming. 4 Select the correct software for simulation and programming. 5 Validate the result	Learning objective for CO1									
 Structure the problem. Identify the appropriate methodology to solve the problem. Define the methodology to solve the problem. Learning objective for CO2 Students will be able to: Adapt the vital skills of compromise and collaboration. Construct , analyzes and approach problem solution as a team Fully understand the role of each individual in a group to accomplish the goal. Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to Plan, co-ordinate and control the complex and diverse activities in project Predict any problems and find solution for it Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to Design appropriately using a modular construction approach to solve the problem as per specifications. Select the correct software for simulation and programming. Validate the result and draw conclusion. Learning objective for CO5 Students will be able to Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions 	Students will be able to:									
3 Identify the appropriate methodology to solve the problem. 4 Define the methodology to solve the problem. 4 Define the methodology to solve the problem. 1 Adapt the vital skills of compromise and collaboration. 2 Construct, analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions	1 Identify specification of the problem.									
4 Define the methodology to solve the problem. Learning objective for CO2 Students will be able to: 1 Adapt the vital skills of compromise and collaboration. 2 Construct , analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present th	2 Structure the problem.									
Learning objective for CO2 Students will be able to: 1 Adapt the vital skills of compromise and collaboration. 2 Construct , analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions	3 Identify the appropriate methodology to solve the problem.									
Students will be able to: 1 Adapt the vital skills of compromise and collaboration. 2 Construct, analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Lear-ing objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Lear-ing objective for CO4 Students will be able to Stign appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Lear-ing objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present the work done by proper documentation	4 Define the methodology to solve the problem.									
1 Adapt the vital skills of compromise and collaboration. 2 Construct , analyzes and approach problem solution as a team 3 Fully understand the role of each individual in a group to accomplish the goal. 4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present the work done by proper documentation 3 Selective for CO5 Students will be able to <th></th> <td></td>										
 Construct , analyzes and approach problem solution as a team Fully understand the role of each individual in a group to accomplish the goal. Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to Plan, co-ordinate and control the complex and diverse activities in project Predict any problems and find solution for it Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to Design appropriately using a modular construction approach to solve the problem as per specifications. Select the correct hardware according to specifications. Select the correct software for simulation and programming. Validate the result and draw conclusion. Learning objective for CO5 Students will be able to Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions 	Students will be able to:									
 Fully understand the role of each individual in a group to accomplish the goal. Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to Plan, co-ordinate and control the complex and diverse activities in project Predict any problems and find solution for it Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to Design appropriately using a modular construction approach to solve the problem as per specifications. Select the correct hardware according to specifications. Select the correct software for simulation and programming. Validate the result and draw conclusion. Learning objective for CO5 Students will be able to Present the work done by proper documentation Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions 	1 Adapt the vital skills of compromise and collaboration.									
4 Develop leadership skills by aligning with the objective of the project and lead the team towards its goal. Learning objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions	2 Construct, analyzes and approach problem solution as a team	Construct, analyzes and approach problem solution as a team								
4 towards its goal. Learning objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions	3 Fully understand the role of each individual in a group to accomplish the goal.	Fully understand the role of each individual in a group to accomplish the goal.								
towards its goal. Learing objective for CO3 Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learing objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learing objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions		n								
Students will be able to 1 Plan, co-ordinate and control the complex and diverse activities in project 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learring objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learring objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions 2 Present paper in national / international conferences, project exhibitions & competitions	towards its goal.									
 Plan, co-ordinate and control the complex and diverse activities in project Predict any problems and find solution for it Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to Design appropriately using a modular construction approach to solve the problem as per specifications. Implement the selected methodology to solve the problem. Select the correct hardware according to specifications. Select the correct software for simulation and programming. Validate the result and draw conclusion. Learning objective for CO5 Students will be able to Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions 										
 2 Predict any problems and find solution for it 3 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions 										
 Plan the progress to result in total completion of the project. Learning objective for CO4 Students will be able to Design appropriately using a modular construction approach to solve the problem as per specifications. Implement the selected methodology to solve the problem. Select the correct hardware according to specifications. Select the correct software for simulation and programming. Validate the result and draw conclusion. Learning objective for CO5 Students will be able to Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions 										
Learning objective for CO4 Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions	Predict any problems and find solution for it									
Students will be able to 1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Lear-ing objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Lear-ing objective for CO6	3 Plan the progress to result in total completion of the project.									
1 Design appropriately using a modular construction approach to solve the problem as per specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions										
1 specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6	Students will be able to									
specifications. 2 Implement the selected methodology to solve the problem. 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6		er								
 3 Select the correct hardware according to specifications. 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6 	*									
 4 Select the correct software for simulation and programming. 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6 										
 5 Validate the result and draw conclusion. Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6 	<u> </u>									
Learning objective for CO5 Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6										
Students will be able to 1 Present the work done by proper documentation 2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6										
 Present the work done by proper documentation Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6 		ļ								
2 Present paper in national / international conferences, project exhibitions & competitions Learning objective for CO6										
Learning objective for CO6										
		S								
Students will										
	Students will									

1	Develop professional practice.
2	Recognize how to do the project to its best.
3	Develop ethical Practices.

Course Outcome	After successful completion of course students will be able to
CO1	Define, analyze and solve complex real life problem.
CO2	Work in collaborative team as a member or leader.
CO3	Apply project management techniques.
CO4	Identify and apply appropriate tools.
CO5	Communicate effectively in verbal and written form.
CO6	Imbibe ethical practices.

Course context, Relevance, Practical Significance:

Course Content: (Syllabus)

1. **Group Size** The student will carry the project work individually or by a group of students. Optimum group size is in 3 students. However, if project complexity demands a maximum group size of 4 students, the committee should be convinced about such complexity and scope of the work.

2. Selection and approval of topic:

- Topic should be related to real life application in the field of Electronics and Telecommunication OR Investigation of the latest development in a specific field of Electronics or Communication or Signal Processing OR The investigation of practical problem in manufacture and / or testing of electronics or communication equipment OR The Microprocessor / Microcontroller based applications project ispreferable. OR Software development project related to VHDL, Communication, Instrumentation, Signal Processing and Agriculture Engineering with the justification for techniques used / implemented is accepted. OR Interdisciplinary projects should be encouraged.
- Each project group interacts and discusses their project idea with Head of Department, Academic coordinator and Project Coordinator. (Project Monitoring committee)
- Students are asked to submit the synopsis on more than one topic according to their area of interest to project coordinator
- Students give presentation to Project Monitoring committee on Topics they have submitted the synopsis.

- These synopses are discussed among the committee of project guides (Project Committee)
- After the presentation committee members select one project topic for each group
- Project guides are allocated according to area of project
- There is also an external guide from industry for industry sponsored projects
- The scope of project is finalized after discussion with the guide
- Each group presents "project introductory seminar" to project guide and Project Monitoring committee members.
- 3. The examination is conducted by two examiners (internal and external) appointed by the university. The examiners appointed must have minimum 5 years of experience with UG qualification or 2 years with PG qualification.
- 4. The assessment is based on Innovative Idea, Depth of understanding, Applications, Individual contributions, presentation, and the grade given by the internal guide based on the work carried out in a semester.
- 5. A log book/Project book of Work carried out during the semester will be maintained with monthly review remarks by the guide and HoD. It should have entries related to the work done, problems faced, solution evolved etc., duly signed by internal and external guides.
- 6. Project report must be submitted in the prescribed format only
- 7. Project Seminarassessment is based on the project topic. It consists of Literature Survey and basic project work during 7th semester
- 8. The report consists of the Literature Survey, basic project work and the size of the report should be maximum of 30pages.
- 9. Project Work assessment is based Hardware and /or software designed and prototyping of the problem statement
- 10. The report consists of the Literature Survey, basic project work, Hardware and software design , Testing and conclusion and the size of the report should be maximum of 50pages during 8th semester
- 11. A certified copy of both the reports is required to be presented to external examiner at the time of final examination.

Relevance of the projects and their contribution towards attainments of POs and PSOs:

- Projects done by final year students are classified into application (for societal, educational, interdisciplinary), product and research type
- Modern tools and technology are used by the students for implementation of their projects
- Each project is evaluated according to rubrics designed
- Each project topic has contribution towards attainment of most of the POs and PSOs

Strength of CO-PO/PSO Mapping (Sample): Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is

mapped

• Each Course Outcome addresses a sub-set of POs and PSOs to varying levels (strengths: 1- Low, 2 – Medium, 3 - Strong).

	Strength of CO-PO/PSO Mapping														
	PO													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	-	*	*	-	-	-	-	-	*	*	
CO2	-	-	-	-	-	-	-	-	3	-	-	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	-	3	-	-	-	
CO4	3	3	-	3	3	-	-	-	-	-	-	3	-	-	
CO5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO6	-	-	-	-	-	-	-	3	-	-	-	-	-	-	