(Autonomous wef AY 2022-23)

Syllabus B. Tech Chemical Engineering (Honors/Minors)

Pattern: 2023 Pattern

(wef AY 2023-24)

B. Tech with Honors Degree with Multidisciplinary Minor (2023 Pattern) Honors in Process Engineering

Sem	Sem Course Cou		Title of Course		achin chem	_	Evaluation Scheme and Marks				Credits					
Sem	Type	Type Code		ТН	TU	PR	INSEM	ENDSEM	CCE	TW	PR/OR	TOTAL	TH	TU	PR/OR	TOTAL
	PCC	2307381	Process Intensification	04	-	-	20	60	20	-	-	100	04	ı	-	04
V	PCC	2307382	Lab Course in Process Intensification	-	-	02	-	-	-	25	50	75	-	ı	01	01
	CEP/FP	2307383	Seminar	-	-	02	-	-	-	50	-	50	-	1	01	01
	PCC	2307384	Process Technology	04	-	-	20	60	20	-	-	100	04	-	-	04
VI	PCC	2307385	Lab Course in Process Technology	-	-	02	-	-	-	25	50	75	-	-	01	01
	CEP/FP	2307386	Mini Project	-	-	02	-	-	-	50	-	50	-	-	01	01
	PCC	2307481	Mass Transfer with Reactions	04	-	-	20	60	20	-	-	100	04	1	-	04
VII	PCC	2307482	Process Utilities	02	-	-	-	-	50	-	-	50	02	-	-	02
			Total	14	-	08	60	180	110	150	100	600	14	-	04	18

Dr. S. N. Jain Chairman, BoS Dr. K. N. Nandurkar Director

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering			
2307381: Process Intensification			
Teaching Scheme:	Credit Scheme: 04	Examination scheme:	
Theory: 04 hrs/week		In Semester Exam: 20 marks	
		End Semesters Exam: 60 marks	
		Continuous Comprehensive Evaluation:	
		20 marks	
		Total: 100 Marks	

Prerequisite: Unit Operations and Unit Processes. Chemical Reaction Engineering, Process Control and Instrumentation.

Course Objectives:

- 1. Understand the concepts, principles, and significance of Process Intensification (PI).
- 2. Apply PI concepts to heat transfer, mass transfer, mixing, and reaction systems.
- 3. Analyze equipment and processes such as microreactors, RPBs, SDRs, and DWCs for performance enhancement.
- 4. Evaluate energy-based PI methods like sonochemistry, microwave-assisted processes, and membrane reactors.
- 5. Relate PI applications to improved material, energy efficiency, and sustainability goals in chemical industries

Course Outcomes: On completion of the course, students will be able to—				
Sr. No.	Course Outcomes		Bloom's Level	
CO1	Interpret PI principles, tools, and advantages over conventional processes.	2 – Understand		
CO2	Apply intensified heat and mass transfer equipme chemical processes.	3-Apply		
CO3	Analyze advanced mixing and microreactor techn process enhancement.	4-Analyze		
CO4	Evaluate reactive separations and energy-based intensification methods for sustainable and efficie processes.	5-Evaluate		
Course Contents:				
Unit I	Introduction of Process Intensification	(L06)	COs Mapped: CO1	

Definition and historical development, PI for sustainability, economic efficiency, and safety, Principles and domains of PI, Benefits of PI compared to conventional processes, Process synthesis, design approaches, miniaturization, multifunctional reactors, PI Toolbox: Active and passive methods.

Unit II	Intensified Heat and Mass Transfer	` ′	COs Mapped: CO1, CO2
			,

Heat transfer intensification, Microchannel and compact heat exchangers, Plate heat exchangers, spiral heat exchangers, Introduction to mass transfer intensification, Rotating Packed Beds (RPBs/HiGee), Membrane-based processes for separation, Applications in chemical industries.

Unit III	0			_ ` /	COs Mapped:
	Technologies				CO2, CO3
Microfluid	ics, static mixers.	coalescence devices.	Spinning	Disc React	tors (SDRs). High

(Autonomous from Academic Year 2022-23)

Unit IV Reactive Separation Techniques (L08) COs Mapped:					ped:			
integrating	integrating reaction and separation, Microstructured (microchannel) reactors.							
pressure	homogenization,	Confined	Impinging	Jet	Reactors	(CIJR),	Membrane	reactors

Reactive distillation, Dividing-Wall Columns (DWCs), Reactive extraction, Reactive absorption, Reactive membrane separations, Centrifugal extractors, Comparison with conventional separation processes.

Unit V	Energy-Based PI Methods	(L10)	COs Mapped:
			CO2, CO4

Sonochemistry – applications and mechanism, Microwave-assisted reactors – principles and advantages, Plasma-assisted reactors, Photocatalytic reactors for reaction and pollution control, Evaluation of energy savings and process efficiency, Sustainable design using energy-based PI approaches.

Reference Books

- 1. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, D. Reay, C. Ramshaw, and A. Harvey, 2nd Edition, Butterworth-Heinemann.
- 2. Process Intensification Technologies for Green Chemistry, K. Boodhoo, and A. Harvey, John Wiley & Sons.
- 3. Re-Engineering the Chemical Processing Plant: Process Intensification, A. Stankiewicz, and J.A. Moulijn, Marcel Dekker.
- 4. Modeling of Process Intensification, F. J. Keil, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- 5. The Fundamentals of Process Intensification, Andrzej Stankiewicz, Tom van Gerven, Georgios Stefanidis, Wiley VCH.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr.	Sr. Components for Continuous Comprehensive Evaluation				
No.					
1	Three Assignments on unit-1, unit-2, unit-3 & 4	10			
2	Group Presentation on unit-5	05			
3	Test on each unit	05			
	Total	20			

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering 2307382: Lab Course in Process Intensification				
Teaching Scheme: Practical: 02 hrs/week	Credit: 01	Examination scheme: TW: 25 marks Oral: 50 marks Total: 75 Marks		

Prerequisite: Fundamentals of Chemical Engineering, Unit Operation and Unit Processes.

Course Objectives:

- 1. Understand the principles and applications of ultrasound in process intensification
- 2. Investigate the principles and operation of reactive distillation
- 3. Explore the utilization of microwave-assisted processes for enhanced chemical reactions
- 4. Study the design and operation of microreactors for intensified chemical processes

Course Outcomes: On completion of the course, students will be able to—						
Sr. No.	Course Outcomes	Bloom's Level				
CO1	Apply the principles of ultrasound, reactive distillation, microwave-assisted processes, and microreactors in laboratory experiments to demonstrate process intensification. 3-Apply					
CO2	Analyze experimental data from intensified processes to assess performance improvements over conventional operations. 4-Evaluate					
CO3	Evaluate and compare different process intensification techniques to recommend suitable approaches for sustainable chemical engineering applications.	5-Evaluate				
	List of Laboratory Experiments / Assignments					
Sr. No	List of experimets	CO Mapping				
1	Study of Ultrasonication.	CO1, CO2, CO3				
2	Study of Reactive Distillation	CO1, CO2, CO3				
3	Study of Microwave-Assisted Processes	CO1, CO2, CO3				
4	Study of Micro-reactors	CO1, CO2, CO3				
5	Study of Compact Heat Exchangers	CO1, CO2, CO3				
6	Study of Solar Detoxification	CO1, CO2, CO3				
7	Study of Photocatalytic oxidation.	CO1, CO2, CO3				
8	Study of Enhanced Mixing Efficiency in Stirred Tanks	CO1, CO2, CO3				
Guidelines for Termwork Assessment						

Term work assessment is to be based on overall performance of students, which includes the following parameters: timely completion of tasks, performance quality, punctuality, participation, and contribution in the experiments. Students will be evaluated based on the experiment, report and presentation.

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering 2307383: Seminar					
	g Scheme: l: 02 hrs/week	Credit : 01	Examination Sch Term Work: 50 Total: 50 Marks	Marks	
Course Outcomes: On completion of the course, students will be able to:					
	Course Outcomes			Bloom's Level	
CO1	Apply process intensif	Apply process intensification principles to identify and select emerging techniques in chemical industries. 3-Apply			
CO2	Analyze research, case studies, and industrial applications to assess their impact on process performance. 4 - Analyze				
CO3	Evaluate and present innovative process intensification strategies through effective technical communication. 5 - Evaluate				

Course Structure:

Week	Activity	Description
Week 1	Introduction to	Guidelines on seminar topics, presentation structure,
	Seminar	evaluation rubrics.
	Course	
Week 2-3	Topic	Students select the process engineering topics and conduct
	Selection &	literature research.
	Research	
Week 4-10	Seminar	Students present their topics weekly. Peer discussions and
	Presentations	Q&A sessions follow each presentation.
Week 11-12	Panel	Group discussions on industrial case studies, challenges,
	Discussion &	and future trends.
	Case Studies	
Week 13	Course	Reflection on learnings, feedback on presentations, and
	Review &	final assessment.
	Feedback	

Format of the Seminar report preparation:

- 1. The Seminar report should be based on a detailed study of any relevant topic to Chemical Engineering. The typing shall be with normal spacing and on one side of the paper.
- 2. The report should be submitted in spiral bound format.
- 3. Front cover: This shall have the following details.
 - Title of the seminar report.
 - The name of the candidate with roll number / examination seat number at the middle.
 - Name of the guide below the candidate's details.

(Autonomous from Academic Year 2022-23)

- The name of the institute and year of submission on separate lines at the bottom.
- 4. The format of the text of the seminar reports:
 - The report shall be presented in the form of a technical paper. The introduction should be followed by literature survey.
 - The Result-discussion and conclusions shall form the last part of the text. Nomenclature and symbols should be added. References should be written in the standard format after the conclusion.
 - The total number of typed pages, excluding cover shall be about 25 to 30. All the pages should be numbered. This includes figures and diagrams.
 - Two copies of the seminar report shall be submitted to the Institute. The candidate shall present the seminar through power point presentation. The total duration of presentation and discussion should be about 30 minutes max.

Evaluation Rubrics for Seminar Presentation:

Criteria	Excellent (10-9)	Good (8-7)	Satisfactory (6-5)	Needs Improvement (4-0)	Weightag e (%)
Technical Content	Depth of research, accuracy, and relevance to Industrial Automation.	Well- researched but minor gaps.	Basic understanding with some errors.	Lacks depth, many inaccuracies.	30%
Presentation Skills	Clear, confident, engaging delivery.	Good, but minor hesitation.	Some difficulties in explanation.	Poor clarity and engagement.	20%
Visual Aids (Slides, Diagrams, etc.)	Well-structured, professional, easy to read.	Good but minor formatting issues.	Acceptable but lacks clarity.	Disorganized, difficult to follow.	10%
Q&A and Discussion	Answers all questions clearly and logically.	Addresses most questions satisfactor ily.	Struggles with some answers.	Unable to answer relevant questions.	20%
Peer Interaction & Feedback	Actively engages in discussions and provides insightful feedback.	Provides useful comments but limited engageme nt.	Minimal participation in discussions.	No engagement in peer discussions.	10%

(Autonomous from Academic Year 2022-23)

Overall	Well-prepared,	Mostly	Somewhat	Unprepared	10%
Professionalism	confident,	prepared	disorganized	and	
	maintains eye	but slight	and rushed.	exceeds/under	
	contact, follows	timing		utilizes time.	
	time limits.	issues.			

Semester VI (TY - B. Tech.) Chemical Engineering				
	23073	384: Process Technology		
Teaching Scheme:	Credit:	Examination Scheme:		
Theory: 04hrs/week	04 Continuous Comprehensive Evaluation: 20 Marks			
		InSem Exam: 20 Marks		
		EndSem Exam: 60 Marks		
		Total: 100 Marks		

Prerequisite: Basic knowledge of chemical process calculations, thermodynamics, heat and mass transfer, reaction engineering, and unit operations.

Course Objectives:

- 1. Provide knowledge of process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs) as essential tools for process design and development.
- 2. Develop the ability to integrate safety, environmental, and economic aspects into holistic process development.
- 3. Familiarize students with recent advancements in organic, inorganic, polymer, and catalytic processes.
- 4. Introduce the principles of green technologies, sustainable process practices, and circular economy concepts.
- 5. Explore bio-refinery technologies for conversion of biomass into biofuels, bio-chemicals, and bio-materials, including relevant industrial applications.

Course	• Outcomes: On completion of the course, students will be able to	
	Course Outcomes	Bloom'sLevel
CO1	Apply the fundamentals of process design to develop process flow diagrams (PFDs) and piping and instrumentation diagrams (P&IDs).	3-Apply
CO2	Analyze chemical process technologies to assess their efficiency, sustainability, and industrial relevance.	4 -Analyze
CO3	Examine the principles of green chemistry, sustainability, and circular economy to identify opportunities for waste minimization, energy efficiency, and resource recovery in process industries.	4 -Analyze
CO4	Analyze bio-refinery processes and advanced process technologies through case studies to recommend sustainable and innovative solutions for chemical engineering applications.	4 -Analyze
	COURSE CONTENTS	
Unit I	Process Development (08hrs)	CO1
	heet Development: Fundamentals of process design, process flow di	· ·

Flow Sheet Development: Fundamentals of process design, process flow diagrams (PFDs), piping and instrumentation diagrams (P&IDs). Holistic Process Development: Integration of environmental, safety, and economic considerations in process design.

(Autonomous from Academic Year 2022-23)

Unit II	Recent Advancements in Process Technologies	(08hrs)	CO2				
Organic I	Organic Processes: Innovations in the production of organic chemicals, pharmaceuticals,						
and polyn	ners. Catalysis in Organic Synthesis: Green ca	talysis, biocat	alysts, photo-				
catalysis,	transition metal catalysts, and electro-catalysis.	Polymer Ch	emistry and				
Technolog	gy: Biodegradable polymers, recyclable and circula	ar polymers, 3	D printing of				
polymers,	smart polymers, and nanopolymers. Inorganic	Processes:	Technological				
advanceme	ents in metallurgy, fertilizers, cement, and inorganic	chemical produ	action.				
Unit III	Unit III Green Technology (08hrs) CO3						
Introduct	Introduction to Green Technologies: Definitions, principles, and applications in process						
industries.	Green Chemistry and Sustainable Processes: A	Atom economy	, solvent-free				
reactions,	carbon capture and utilization (CCU), waste minimi	zation, and reu	se. Industrial				

Unit IV Sustainability and Circular Economy (08hrs) CO3

Applications: Case studies on energy-efficient and low-emission process technologies.

Concept of Sustainability: Overview of sustainable practices in the process industries. Circular Economy Principles: Reduce, reuse, and recycle approaches, with a focus on the sugar industry. Case Study: Sugar Industry: Implementation of sustainability and circular economy strategies in sugar production, recycling, and waste utilization.

Unit V Bio-Refinery Processes (08hrs) CO4

Introduction to Bio-Refinery: Concepts, biomass conversion processes, and value-added products. Bio-Refinery Technologies: Biomass conversion into biofuels, bio-chemicals, and bio-materials. Discussion on feedstock selection and process design. Industrial Applications: Case studies of bio-refineries in the food, energy, and chemical industries.

Reference Books

- 1. Process Systems Analysis and Control, D.R. Coughanowr, McGraw-Hill Education, 3rd Edition, 2009.
- 2. Unit Operations of Chemical Engineering, Warren McCabe, Julian Smith, Peter Harriott, McGraw-Hill Education, 7th Edition, 2005.
- 3. Green Chemistry and Engineering: A Practical Design Approach, Concepción Jiménez-González, Wiley, 1st Edition, 2011.
- 4. The Circular Economy: A User's Guide, Walter R. Stahel, Routledge, 1st Edition, 2019.

G	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three Assignments on unit-1, unit-2, unit-3 & 4	10			
2	Group Presentation on unit-5	05			
3	Test on each unit	05			
	Total	20			

(Autonomous from Academic Year 2022-23)

		er VI (TY - B. Tech.) Cho 7385: Lab work in Proce		
Teachi	ng Scheme:	Credit :	Examination Sch	eme:
Practic	al: 02 hrs/week	01	Practical: 50 Man	·ks
			Term Work: 25 M Total:100 Marks	Marks
Course	Outcomes: On compl	etion of the course, studen	ts will be able to	
	Course Outcomes			Bloom'sLevel
CO1	1	tals of process design to d piping and instrumentation		3-Apply
CO2	Analyze chemical prosustainability, and in	rocess technologies to assendustrial relevance.	ess their efficiency,	4 -Analyze
Examine the principles of green chemistry, sustainability, and				4 -Analyze
CO4 Analyze bio-refinery processes and advanced process technologies through case studies to recommend sustainable and innovative solutions for chemical engineering applications.				4 -Analyze
		f Laboratory Experimen		
Sr. No.	Laboratory Experin			CO Mapped
1.		ess flow diagrams (PFDs) ams (P&IDs) using DWSI		CO1
2.	Case study on a selec			CO2
3.	Synthesis and charact	erization of biodegradable	polymers.	CO3
4.		and its applications using p		CO2
5.		and case studies on zero wa		CO3
6.		y-efficient process analysis	-	CO2
7.		of industrial by-products (c	· · · · · · · · · · · · · · · · · · ·	any CO3
8.		nservation techniques in pr	ocess industries.	CO3
9.		ss into biofuels (Biodiesel		ole CO4
10.		roduction and analysis.		CO4
	G	uidelines for Laboratory	Conduction	
1.	Experiments should be	performed in a group of t	wo students only.	

(Autonomous from Academic Year 2022-23)

- 2. Avoid contacting circuits with weth and sor wet materials.
- 3. Double check circuits for proper connections and polarity prior to applying the power.
- 4. Observe polarity when connecting polarized components or test equipment.
- 5. Make sure test instruments are set for proper function and range prior to taking measurement.

Guidelines for Student's Lab Journal

Student's lab journal should contain following related things-

Title, Objectives, Hardware/Software requirement, Theory, Circuit Diagram, Observation table, Graph, Calculations, Results, Conclusion and Assignment questions

Guidelines for Practical and Termwork Assessment

- R1: Timely completion of experiment (10 Marks)
- R2: Understanding of experiment (10 Marks)
- R3: Presentation /clarity of journal writing (10 Marks)

Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of Term work

(Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering 2307386:Mini project						
Teaching Scheme: Practical: 02 hrs/week		9				
	Total: 100 Marks					
Course C	Course Outcomes: On completion of the course, students will be able to—					
	Course Outcomes			Bloom's Level		
CO1	CO1 Identify a process engineering challenge and formulate a 3-Apply structured mini-project proposal.					
CO2	1 1 1			4 - Analyze		
CO3		e process parameters fo		4 - Analyze		
CO4	Document and pre-	esent the mini-proje	ect with technical	5-Evaluate		

Course Structure:

Week	Activity	Description
Week 1	Introduction & Problem	Overview of process engineering challenges,
	Identification	brainstorming, and topic selection.
Week 2-3	Project Proposal Submission	Define objectives, identify key process
	& Approval	parameters, develop process flow diagrams,
		and finalize a proposal.
Week 4-6	Process Design &	Identify suitable equipment, design process
	Equipment Selection	layouts, perform material and energy balance
		calculations.
Week 6-9	Implementation &	Develop a lab-scale or simulated process
	Experimental Setup	model, incorporate relevant process
		monitoring instruments, and establish key
		operational control parameters.
Week 10-11	Process Optimization &	Evaluate system efficiency, optimize key
	Performance Analysis	parameters, and validate process
		performance.

(Autonomous from Academic Year 2022-23)

Week 12-13	Documentation & Report Writing	Prepare detailed project reports including methodology, results, analysis, and conclusions.
Week 13	Final Presentation & Demonstration	Present the project with live demonstration and Q&A session.

(Autonomous from Academic Year 2022-23)

Evaluation Rubrics for Mini Project

Criteria	Excellent (10-9)	Good (8-7)	Satisfactory (6-5)	Needs Improvement (4-0)	Weightage (%)
Problem Identification & Proposal	Clearly defined problem, innovative solution, well-structured proposal.	Problem well- identified, minor gaps in proposal.	Basic problem definition, lacks detailed planning.	Poor problem definition, unclear proposal.	15%
Design & Implementation	Exemplary design with innovative solutions, precise calculations, and flawless execution.	Good design, minor errors in integration.	Acceptable design but lacks optimization.	Poor design, major errors in implementation.	25%
Process Optimization & Performance Evaluation	All key parameters are effectively optimized and validated using quantitative data.	Good testing and optimization with minor unresolved issues.	Optimization is attempted, but data validation lack depth and consistency.	Optimization is poorly executed, resulting in subpar performance and unclear validation.	20%
Documentation & Report	Comprehensive report with methodology, results, and future scope.	Well- structured but missing minor details.	Basic report, lacks depth in analysis.	Incomplete or poorly written report.	15%
Final Presentation & Demonstration	Confident delivery, clear visuals, logical explanation.	Good delivery, some minor issues.	Presentation lacks clarity and confidence.	Poor presentation, difficult to understand.	15%
Teamwork & Collaboration	Active participation, clear role distribution, excellent teamwork.	Good teamwork, minor coordination issues.	Acceptable teamwork, some members less active.	Lack of coordination and contribution.	10%

	Se	•	Y - B. Tech.) Chemical Eng Mass Transfer with Reaction	_			
_	g Scheme: 04hrs/week	Credit: 04	Examination Scheme: Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks Total: 100 Marks				
Prerequ mechanic		of thermodyna	mics, reaction engineering, m	ass transfe	r, and fluid		
2. D 3. A ca 4. E	nemical reaction evelop unders nalyze hetero atalytic proces explore reactive eaction in susta	on engineering. tanding of diffugeneous mass ses. re separations, ainable and gre	transfer with reaction in d micro-reactors, and applicate technologies.	s in gases, l ifferent re utions of 1	iquids, and solids.		
Course	Course Out		the course, students will be a	ble to	Bloom'sLevel		
CO1			reaction principles to analyze	reactive	3-Apply		
CO2	Analyze d and solids.	iffusion and re	action mechanisms in gases, l	iquids,	4-Analyze		
CO3 Analyze heterogeneous reactions in reactors and evaluate effectiveness factors. 4-Analyze			eactions in reactors and evalu	ate	4-Analyze		
	Evaluate reactive separations, micro-reactors, and green technology for sustainable solutions. 5-Evaluate						
CO4	1 Commerce	for sustainable					
CO4			OURSE CONTENTS		<u> </u>		

Penetration theory, Surface renewal theory), Dimensionless numbers relevant to mass transfer with reaction

Unit II	Diffusion and Reaction Mechanisms		CO2
Diffusion models: Fick's Law, Maxwell-Stefan diffusion, Diffusion in gases, liquids, and solids			
with rea	ction, Enhancement factors and film theories in d	iffusion-co	ntrolled reactions,
Applications in absorption with chemical reaction (e.g., CO ₂ absorption in amine solutions).			
Unit III	Mass Transfer with Heterogeneous Reactions	(08hrs)	CO3

Mass transfer across phase boundaries, Effectiveness factor and Thiele modulus, Modeling of gas-

(Autonomous from Academic Year 2022-23)

solid and liquid-solid reactions, Slurry reactors, trickle-bed reactors, and fluidized bed reactors, Catalyst pore diffusion and reaction.

Unit IV	Reactive Separations	(08hrs)	CO3, CO4	
Reactive distillation, Study of reactive separation columns, Equilibrium and rate-based modeling				
of reactive separations, Membrane reactors, Role of catalysts in mass transfer-reaction systems.				

Unit V Applications and Advanced Topics (08hrs) CO4

Micro-reactors and intensified reactive mass transfer, Green chemistry applications (Hydrogen production, Biofuel synthesis), Applications in environmental engineering (e.g., pollutant removal).

ReferenceBooks

- 1. Mass Transfer Operations, R.E. Treybal, McGraw-Hill, 3rd Edition, 1981.
- 2. Chemical Reaction Engineering, Octave Levenspiel, John Wiley & Sons, 3rd Edition, 1999.
- 3. Elements of Chemical Reaction Engineering, H. Scott Fogler, Prentice Hall, 5th Edition, 2016.
- 4. Mass Transfer with Chemical Reactions, J. M. Coulson and J. F. Richardson, Chemical Engineering Series, Elsevier, 6th Edition, 2005.
- 5. Process Intensification in Chemical Engineering, Andrzej Stankiewicz, Tom Van Gerven, Wiley-VCH, 2008.
- 6. Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Wiley-VCH, 2nd Edition, 2008.
- 7. hemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, J.M. Coulson, J.F. Richardson, R.K. Sinnott, Elsevier, 6th Edition, 2005.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three Assignments on unit-1, unit-2, unit-3 & 4	10	
2	Group Presentation on unit-5	05	
3	Test on each unit	05	
	Total	20	

(Autonomous from Academic Year 2022-23)

Semester VII (TY - B. Tech.) Chemical Engineering			
2307482: Process Utilities			
Teaching Scheme: Credit: Examination Scheme:			
Theory :02hrs/week	02	Continuous Comprehensive Evaluation: 50 Marks	
		Total: 50 Marks	
Draw avisites, Design of the same dynamics, fluid mechanics, heat transfer, and write a continue			

Prerequisites: Basics of thermodynamics, fluid mechanics, heat transfer, and unit operations.

Course Objectives:

- 1. Provide knowledge of various process utilities and their role in chemical process industries, including classification, identification, and economic impact.
- 2. Understand water and steam systems, including water treatment, boiler feed water, steam generation, and utilization in process plants.
- 3. Study non-steam heating systems such as hot oils, thermic fluids, and fired heaters, including their properties, selection, and industrial applications.
- 4. Explore other utilities such as compressed air, inert gases, vacuum systems, chilling plants, refrigeration, and electrical power systems in process industries.

Course Outcomes: On completion of the course, students will be able to

Apply knowledge of process utilities and assess their economic impact. CO2 Analyze water and steam systems for efficient utilization. CO3 Examine non-steam heating and other utility systems for industrial applications. CO4 Evaluate and optimize utility systems for efficiency, sustainability, 5-Evaluate		Course Outcomes	Bloom'sLevel
CO3 Examine non-steam heating and other utility systems for industrial applications. 4-Analyze Evaluate and optimize utility systems for efficiency, sustainability, 5-Evaluate	CO1		3-Apply
applications. 4-Analyze 4-Analyze Evaluate and optimize utility systems for efficiency, sustainability, 5-Evaluate	CO2	Analyze water and steam systems for efficient utilization.	4-Analyze
3-Evaluate	CO3		4-Analyze
and reliability.	CO4	Evaluate and optimize utility systems for efficiency, sustainability, and reliability.	5-Evaluate

COURSE CONTENTS

Unit I Introduction of utilities:	(04hrs)	CO1
-----------------------------------	---------	-----

Role of Process Utilities in process industries, Classification of process utilities, Impact on Project economics, Colour codes used for identification of process utilities.

Water characteristics, conditioning and treatment methods of water for process industries, water softening techniques, De-mineralized Water, Applications of water, Process water, and boiler feed water (BFW) and its characteristics, cooling Water, recycling aspects of water from blow downs

Unit III Steam (05hrs) CO2, CO

Properties of steam, Characteristics properties, classification, selection and industrial applications Steam calculations, application of steam systems in chemical process plants, design of

(Autonomous from Academic Year 2022-23)

efficient steam heating systems, Superheated steam, condensate utilization, flash steam, steam traps, Steam generators, classification, construction features, Boiler Accessories and Mountings, Economiser, super-heater, pre-heater

Unit IV Non-steam heating systems (05hrs) CO3

Hot Oil/Specialized Heat Transfer Fluids/Thermic Fluids, Mineral oils, Dowtherm - Synthetic Organic Fluids, Dowcal - Inhibited Glycols, Syltherm - Silicone Fluids, Characteristics properties, classification, selection and industrial applications Fuels, Fired heaters

Unit V Other utilities (05hrs) CO3, CO4

Air: Necessity, process air, instrument air, compressed air, air-water vapour mixture, psychrometry, Characteristics properties, classification, selection and industrial applications, Characteristics of air and air receivers, Inert gases, Inert gas generation Electrical Power: HT/LT, Emergency power. Inverters, DG sets. Etc. Vacuum system engineering, Chilling plant, refrigeration, Emergency Drives Identification

ReferenceBooks

- 1. Chemical Plant Utilities, Sathiyamoorthy Manickkam, LAP LAMBERT Academic Publishing, 1st Edition, 2016.
- 2. A Textbook of Thermal Engineering, R.S. Khurmi, J.K. Gupta, S. Chand Publishing, 1st Edition, 2010.
- Chemical Engineering, Vol. 6: Chemical Engineering Design, J.M. Coulson, J.F. Richardson, R.K. Sinnott, Elsevier Butterworth-Heinemann, 6th Edition, 1999.
 Steam Generators and Waste Heat Boilers: For Process and Plant Engineers, V. Ganapathy, CRC Press, 1st Edition, 2017.
- 4. Fuels and Combustion, Samir Sarkar, Orient BlackSwan, 1st Edition, 2009.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	Three Assignments on unit-1, unit-2, unit-3 & unit-4	40	
2	Group Presentation on unit-5	10	
	Total	50	

(Autonomous from Academic Year 2022-23)