(Autonomous wef AY 2022-23)

Syllabus B. Tech Chemical Engineering (Honors/Minors)

Pattern: 2022 Pattern

(wef AY 2022-23)

B. Tech (Chemical Engineering) with Honors/Minors in Process Engineering (2022 Pattern)

Sem	Course	urse Course Title of Course	Teaching Scheme Evaluation Scheme and Marks		Credits											
	Type	Code	This of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TW	PR	TOTAL	тн	TU	PR	TOTAL
VI	DCC	CHE223021	Process Intensification	04	1	1	20	60	20	ı	ı	100	04	1	-	04
VI	DCC	CHE223022	Lab Course in Process Intensification	-	-	04	-	-	-	50	50	100	-	-	02	02
VII	DCC	CHE224021	Process Technology	04	-	-	20	60	20	-	-	100	04	-	-	04
VII	DCC	CHE224022	Lab Course in Process Technology	-	-	04	-	-	-	50	50	100	-	-	02	02
	DCC	CHE224023	Mass Transfer with Reactions	03	-	-	20	60	20	-	-	100	03	-	-	03
VIII	DCC	CHE224024	Process Utilities	03	-	-	20	60	20	-	-	100	03	-	-	03
	Total		14	-	08	80	240	80	100	100	600	14	-	04	18	

Dr. S. N. Jain Chairman, BoS Dr. K. N. Nandurkar Director

(Autonomous from Academic Year 2022-23)

Semester VI (TY - B. Tech.) Chemical Engineering					
	CHE223021: Pro	cess Intensification			
Teaching Scheme:	Teaching Scheme: Credit :04 Examination scheme:				
Theory: 04 hrs/week		In Semester Exam: 20 marks			
		End Semesters Exam: 60 marks			
		Continuous Comprehensive Evaluation: 20			
		marks			
		Total: 100 Marks			

Prerequisite: Fundamentals of Chemical Engineering, Unit Operations and Unit Processes. Chemical Reaction Engineering, Process Control and Instrumentation Basic Process Simulation Tools

Course Objectives:

- 1. Understand the fundamentals of process intensification, including its definition, historical development, and principles for sustainability, economics, and safety.
- 2. Analyze and apply various intensified heat exchangers, such as microchannel and printed circuit heat exchangers, in chemical industries.
- 3. Explore advanced mass transfer techniques, including rotating packed beds, membrane processes, and reactive distillation, and their energy-based intensifications.
- 4. Implement advanced mixing and reactor technologies, such as microfluidics and plasma-assisted reactors, and understand their applications in process intensification.
- 5. Utilize process design and simulation tools like Aspen Plus and ANSYS Fluent, focusing on process control, automation, optimization, and safety in intensified processes.

Course Outcomes: On completion of the course, students will be able to—					
Sr. No.	Course Outcomes	Bloom's Level			
CO1	CO1 Define process intensification, its history, and principles, and compare conventional and intensified processes.				
CO2	d their	5-Evaluate			
CO3	CO3 Apply advanced mass transfer techniques and energy-based intensifications.				
CO4	Implement and assess various intensified mixing artechnologies.	nd reactor	4-Analyze		
CO5 Use simulation tools (Aspen Plus, ANSYS Fluent) for process design, control, optimization, and safety considerations.			5-Evaluate		
Course Contents:					
Unit I	Introduction of Process Intensification Techniques	(L06)	COs Mapped: CO1		

Definition and historical development of PI, PI for Sustainability, economics, and safety, Principles and Domains of Process Intensification (PI), Overview of conventional vs intensified processes, Benefits of Intensified Processes, Process synthesis and design approaches, Concepts of miniaturization, multifunctional reactors, and integrated processes, PI for energy and material savings.

PI Toolbox – Equipments and Methods, Active and Passive Techniques.

Heat transfer intensification, Microchannel (Microheat) heat exchangers and compact heat exchangers, Applications in chemical industries, Plate heat exchanger, spiral heat exchanger Unit Enhanced Mass Transfer (L08) COs Mapped: All COs Rotating Packed Beds (RPBs/HiGee), Membrane-based Processes, Microreactors and Microstructured Devices, Reactive Distillation, Dividing-Wall Columns (DWCs), Centrifugal Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books							
exchangers, Applications in chemical industries, Plate heat exchanger, spiral heat exchanger Unit Enhanced Mass Transfer (L08) COs Mapped: All COs Rotating Packed Beds (RPBs/HiGee), Membrane-based Processes, Microreactors and Microstructured Devices, Reactive Distillation, Dividing-Wall Columns (DWCs), Centrifugal Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books				COs			
Unit Enhanced Mass Transfer (L08) COs Mapped: All COs	Heat trans	Heat transfer intensification, Microchannel (Microheat) heat exchangers and compact heat					
Rotating Packed Beds (RPBs/HiGee), Membrane-based Processes, Microreactors and Microstructured Devices, Reactive Distillation, Dividing-Wall Columns (DWCs), Centrifugal Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	exchanger	s, Applications in chemical industries, Plate heat exchar	nger, spiral	heat exchanger			
Rotating Packed Beds (RPBs/HiGee), Membrane-based Processes, Microreactors and Microstructured Devices, Reactive Distillation, Dividing-Wall Columns (DWCs), Centrifugal Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Unit	Enhanced Mass Transfer	(L08)	COs Mapped: All			
Microstructured Devices, Reactive Distillation, Dividing-Wall Columns (DWCs), Centrifugal Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	III			COs			
Extractor, Reactive distillation, Reactive absorption, Reactive extraction, Reactive membrane separations. Energy based intensifications, Sonochemistry, Microwaves Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Rotating P	acked Beds (RPBs/HiGee), Membrane-based Processes	s, Microrea	ctors and			
Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Microstruc	ctured Devices, Reactive Distillation, Dividing-Wall Co	lumns (DV	VCs), Centrifugal			
Unit IV Intensified Mixing & Reactors (L08) COs Mapped: All COs Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Extractor,	Reactive distillation, Reactive absorption, Reactive extra	raction, Rea	active membrane			
Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	separation	s. Energy based intensifications, Sonochemistry, Micro	waves				
Microfluids, Static Mixer, coalescence device, Spinning Disc Reactors (SDRs), High-Intensity Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Unit IV	Intensified Mixing & Reactors	(L08)	COs Mapped:			
Ultrasound (Sonochemistry), High-Pressure Homogenization, Plasma-Assisted Reactors, Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books				All COs			
Confined Impinging Jet Reactors (CIJR), Microwave-Assisted Reactors, Electrochemical Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Microfluid	ls, Static Mixer, coalescence device, Spinning Disc Rea	actors (SDI	Rs), High-Intensity			
Reactors, Photocatalytic Reactors, Microstructured (microchannel) reactors, Membrane reactors combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Ultrasound	d (Sonochemistry), High-Pressure Homogenization, Pla	sma-Assist	ed Reactors,			
Combining reaction and separation. Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Confined 1	Impinging Jet Reactors (CIJR), Microwave-Assisted Re	actors, Ele	ctrochemical			
Unit V Process Design and Simulation Tools for PI (L10) COs Mapped: All COs Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Reactors,	Photocatalytic Reactors, Microstructured (microchannel) reactors,	Membrane reactors			
Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	combining	reaction and separation.					
Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control and Automation in PI, Optimization and Safety Considerations in PI Reference Books	Unit V	Process Design and Simulation Tools for PI	(L10)	COs Mapped:			
and Automation in PI, Optimization and Safety Considerations in PI Reference Books				All COs			
Reference Books	Introduction to Process Simulation Tools, Aspen Plus, ANSYS Fluent for PI, Process Control						
	and Automation in PI, Optimization and Safety Considerations in PI						
1 Due asso Intensification, Engineering for Efficiency, Cystoinghility and Elevihility, D. Door		Reference Books					
1. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, D. Reay,	1. Proce						
1. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility. D. Reav.							

- Process Intensification: Engineering for Efficiency, Sustainability and Flexibility, D. Reay C. Ramshaw, and A. Harvey, 2nd Edition, Butterworth-Heinemann.
- 2. Process Intensification Technologies for Green Chemistry, K. Boodhoo, and A. Harvey, John Wiley & Sons.
- 3. Re-Engineering the Chemical Processing Plant: Process Intensification, A. Stankiewicz, and J.A. Moulijn, Marcel Dekker.
- 4. Modeling of Process Intensification, F. J. Keil, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- 5. The Fundamentals of Process Intensification, Andrzej Stankiewicz, Tom van Gerven, Georgios Stefanidis, Wiley VCH.

Sr.	Components for Continuous Comprehensive Evaluation	Marks
No.		Allotted
1	Three Assignments on unit-1, unit-2, unit-3 & 4	10
2	Group Presentation on unit-5	05
3	LMS Test on each unit	05
	Total	20

(Autonomous from Academic Year 2022-23)

Semester V (TY - B. Tech.) Chemical Engineering CHE223022: Lab Course in Process Intensification						
Teaching Scheme: Practical: 04 hrs/week	Credit Scheme: 02	Examination scheme: TW: 50 marks Oral: 50 marks Total: 100 Marks				

Prerequisite: Fundamentals of Chemical Engineering, Unit Operation and Unit Processes.

Course Objectives:

- 1. Understand the principles and applications of ultrasound in process intensification
- 2. Investigate the principles and operation of reactive distillation
- 3. Explore the utilization of microwave-assisted processes for enhanced chemical reactions
- 4. Study the design and operation of microreactors for intensified chemical processes

Course Outcomes: On completion of the course, students will be able to-Sr. No. Course Outcomes Bloom's Level Apply the ultrasound techniques for process intensification, CO₁ design optimized chemical processes 3-Apply distillation. Evaluate the performance of microwave-assisted reactions and analyze microreactor performance for intensified CO₂ 5-Evaluate processes Demostrate compact heat exchangers, solar detox and **CO3** 3-Apply photocatalytic oxidation reactor. Enhance mixing efficiency in tanks and analyze its impact **CO4** 4-Analyze on processes and product quality. **List of Laboratory Experiments / Assignments** Sr. No List of experimets **CO Mapping** Study of Ultrasonication. **CO1** 1 2 Study of Reactive Distillation **CO1** Study of Microwave-Assisted Processes 3 CO₂ 4 Study of Micro-reactors CO₂ Study of Compact Heat Exchangers 5 CO₃ Study of Solar Detoxification 6 CO₃ Study of Photocatalytic oxidation. 7 **CO4** 8 Study of Enhanced Mixing Efficiency in Stirred Tanks **CO4 Guidelines for Termwork Assessment**

Term work assessment is to be based on overall performance of students, which includes the following parameters: timely completion of tasks, performance quality, punctuality, participation, and contribution in the experiments. Students will be evaluated based on the experiment, report and presentation.

(Autonomous from Academic Year 2022-23)

Semester VII (TY - B. Tech.) Chemical Engineering						
	CHE224021:Proce	ess Technology				
Teaching Scheme:	Teaching Scheme: Credit: Examination Scheme:					
Theory: 04hrs/week 04		Continuous Comprehensive				
		Evaluation: 20 Marks				
		InSem Exam: 20 Marks				
		EndSem Exam: 60 Marks				
		Total: 100 Marks				

Prerequisite: Basic knowledge of chemical process calculations, thermodynamics, heat and mass transfer, reaction engineering, and unit operations.

Course Objectives:

- 1. Provide knowledge of process flow diagrams (PFDs) and piping and instrumentation diagrams as essential tools for process design and development.
- 2. Develop the ability to integrate safety, environmental, and economic aspects into holistic process development.
- 3. Familiarize students with recent advancements in organic, inorganic, polymer, and catalytic processes.
- 4. Introduce the principles of green technologies, sustainable process practices, and circular economy concepts.
- 5. Explore bio-refinery technologies for conversion of biomass into biofuels, bio-chemicals, and bio-materials, including relevant industrial applications.

Course Outcomes: On completion of the course, students will be able to						
		Bloom'sLevel				
CO1	CO1 Develop process flow sheets while incorporating environmental, safety, and economic considerations.					
CO2	Identify and analyze recent technological advancemer organic and inorganic process technologies.	nts in	4 -Analyze			
CO3	ngineering	3-Apply				
CO4	ility nd other	5-Evaluate				
CO5	Evaluate the applications of bio-refinery processes to biomass valorization in different industrial sectors.	enhance	5-Evaluate			
	COURSE CONTENTS					
Unit I	Process Development	(08hrs)	CO1			
Flow S	heet Development: Fundamentals of process design, pro	cess flow di	agrams			
(PFDs),	piping and instrumentation diagrams (P&IDs). Holistic	Process De	velopment:			
Integrat	Integration of environmental, safety, and economic considerations in process design.					
Unit II	Recent Advancements in Process Technologies	(08hrs)	CO2			
Organic Processes: Innovations in the production of organic chemicals, pharmaceuticals,						
and polymers. Catalysis in Organic Synthesis: Green catalysis, biocatalysts, photo-						
catalysi	s, transition metal catalysts, and electro-catalysis.	Polymer C	chemistry and			

(Autonomous from Academic Year 2022-23)

Technology: Biodegradable polymers, recyclable and circular polymers, 3D printing of polymers, smart polymers, and nanopolymers. **Inorganic Processes:** Technological advancements in metallurgy, fertilizers, cement, and inorganic chemical production.

Unit III Green Technology (08hrs)	CO ₃
-----------------------------------	-----------------

Introduction to Green Technologies: Definitions, principles, and applications in process industries. **Green Chemistry and Sustainable Processes:** Atom economy, solvent-free reactions, carbon capture and utilization (CCU), waste minimization, and reuse. **Industrial Applications:** Case studies on energy-efficient and low-emission process technologies.

ľ	Unit IV	Sustainability and Circular Economy	(08hrs)	CO4

Concept of Sustainability: Overview of sustainable practices in the process industries. **Circular Economy Principles:** Reduce, reuse, and recycle approaches, with a focus on the sugar industry. **Case Study: Sugar Industry:** Implementation of sustainability and circular economy strategies in sugar production, recycling, and waste utilization.

Unit V Bio-Refinery Processes (08hrs) CO5

Introduction to Bio-Refinery: Concepts, biomass conversion processes, and value-added products. Bio-Refinery Technologies: Biomass conversion into biofuels, bio-chemicals, and bio-materials. Discussion on feedstock selection and process design. Industrial Applications: Case studies of bio-refineries in the food, energy, and chemical industries.

Reference Books

- 1. Process Systems Analysis and Control, D.R. Coughanowr, McGraw-Hill Education, 3rd Edition, 2009.
- 2. Unit Operations of Chemical Engineering, Warren McCabe, Julian Smith, Peter Harriott, McGraw-Hill Education, 7th Edition, 2005.
- 3. Green Chemistry and Engineering: A Practical Design Approach, Concepción Jiménez-González, Wiley, 1st Edition, 2011.
- 4. The Circular Economy: A User's Guide, Walter R. Stahel, Routledge, 1st Edition, 2019.

Guid	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation					
1	LMS Test / Assignment on Problem solving through Tutorial / Group presentation on real life problem	20				

Semester VII (TY - B. Tech.) Chemical Engineering CHE224022: Lab work in Process Technology,					
Teaching Scheme: Credit: Examination Scheme:					
Practical: 04 hrs/week		02	Practical: 50 Ma	Practical: 50 Marks	
Tracticals of mist week		-		Term Work: 50 Marks	
		Total:100 Marks			
Course Ou	itcomes: On compl	etion of the course, students w			
	Course Outcomes			Bloo	m'sLevel
CO1	_	te process flow sheets integrat nic considerations using softwa	_	3	-Apply
CO2	organic and inorga	ntal analysis and interpret data nic process technologies.		4 -	·Analyze
CO3	sustainable practic	nplementation of green chemis es in laboratory-scale processe	es.	3	-Apply
CO4	O4 Evaluate process sustainability and circular economy strategies through practical applications.		5-]	Evaluate	
CO5	and product development.		5-]	Evaluate	
G		f Laboratory Experiments/ A	Assignments		~~
	aboratory Experin	nents/Assignments			CO
No.					Mapped
in:	strumentation diagr	ess flow diagrams (PFDs) or p ams (P&IDs) using DWSIM/ .			CO1
	=	ted chemical process.			CO2
		erization of biodegradable pol			CO3
4. Sy	ynthesis of catalyst	and its applications using phot	ocatalytic reactor		CO2
5. W	aste minimization a	and case studies on zero waste	discharge		CO3
6. Ca	ase study on Energy	y-efficient process analysis in c	chemical reactions.		CO2,CO3
, ,	ecycling and reuse odustry).	of industrial by-products (case	study utilization on	any	CO4
8. W	Water and energy conservation techniques in process industries.			CO4	
7.	onversion of biomas ls or waste oils).	ss into biofuels (Biodiesel prod	luction from vegetal	ole	CO5
		roduction and analysis.			CO5
Guidelines for Laboratory Conduction					
Experiments should be performed in a group of two students only.					
2. Avoid contacting circuits with weth and sor wet materials.					
3. Double check circuits for proper connections and polarity prior to applying the power.					
4. Observe polarity when connecting polarized components or test equipment.					
measurement.					
		Suidelines for Student's Lab	Journal		

(Autonomous from Academic Year 2022-23)

Student's lab journal should contain following related things-

Title, Objectives, Hardware/Software requirement, Theory, Circuit Diagram, Observation table, Graph, Calculations, Results, Conclusion and Assignment questions

Guidelines for Practical and Termwork Assessment

- R1: Timely completion of experiment (10 Marks)
- R2: Understanding of experiment (10 Marks)
- R3: Presentation /clarity of journal writing (10 Marks)

Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of Term work

(Autonomous from Academic Year 2022-23)

Semester VIII (TY - B. Tech.) Chemical Engineering CHE224023:Mass Transfer with Reactions					
_	Scheme: 03hrs/week	Credit : 03		Comprehensive Ev Exam: 20 Marks n: 60 Marks	
Prerequi mechanic		of thermodynam	ics, reaction engi	neering, mass tran	sfer, and fluid
	bjectives:				
	-	dge of fundamen	itals of mass tran	sfer in reactive sys	tems and their role
		tion engineering		,	
				n mechanisms in	gases, liquids, and
	lids.	U			<i>U</i> , 1 ,
3. A	nalyze heterog	geneous mass tra	ansfer with react	tion in different re	eactor systems and
	talytic process				,
			icro-reactors, an	d applications of	mass transfer with
	=	inable and green		11	
			ne course, studen	ts will be able to	
	Course Outo	comes			Bloom'sLevel
CO1	Apply mass systems.	transfer and reac	tion principles to	analyze reactive	3-Appply
CO2	Analyze diff and solids.	usion and reaction	on mechanisms in	n gases, liquids,	4-Analyze
CO3 Analyze heterogeneous reactions in reactors and evaluate effectiveness factors. 4-Analyze		4-Analyze			
CO4 Evaluate reactive separations, micro-reactors, and green technology for sustainable solutions. 5-Evaluate reactive separations are technology for sustainable solutions.		5-Evaluate			
COURSE CONTENTS					
Unit I	Fundamenta Chemical Re		Transfer with	(08hrs)	CO1
Basics of mass transfer in reactive systems, Role of interface mass transfer in chemical reactions,					
Classification: Homogeneous & Heterogeneous reactions, Theories of mass transfer (Film theory, Penetration theory, Surface renewal theory), Dimensionless numbers relevant to mass transfer with reaction					
Unit II	Diffusion and	d Reaction Mec	hanisms	(08hrs)	CO2
Diffusion	n models: Ficl	k's Law. Maxwe	ell-Stefan diffusi	on, Diffusion in g	ases, liquids, and
		Law, Man			asos, nquius, and

solids with reaction, Enhancement factors and film theories in diffusion-controlled reactions, Applications in absorption with chemical reaction (e.g., CO₂ absorption in amine solutions).

Unit III	Mass Transfer with Heterogeneous	(001)	CO2		
	Reactions	(08hrs)	CO3		
Mass tra	nsfer across phase boundaries, Effectiveness fa	actor and Thiele mo	dulus, Modeling		
of gas-so	of gas-solid and liquid-solid reactions, Slurry reactors, trickle-bed reactors, and fluidized bed				
reactors,	Catalyst pore diffusion and reaction.				
Unit IV	Reactive Separations	(08hrs)	CO3, CO4		
Reactive	Reactive distillation, Study of reactive separation columns, Equilibrium and rate-based				
modeling	modeling of reactive separations, Membrane reactors, Role of catalysts in mass transfer-				
reaction	systems.				
Unit V	Applications and Advanced Topics	(08hrs)	CO4		
Micro-reactors and intensified reactive mass transfer, Green chemistry applications					
(Hydrogen production, Biofuel synthesis), Applications in environmental engineering (e.g.,					
pollutant removal).					
ReferenceBooks					
1. Mass Transfer Operations, R.E. Treybal, McGraw-Hill, 3 rd Edition, 1981.					

- 1. Mass Transfer Operations, R.E. Treybal, McGraw-Hill, 3rd Edition, 1981.
- 2. Chemical Reaction Engineering, Octave Levenspiel, John Wiley & Sons, 3rd Edition, 1999.
- 3. Elements of Chemical Reaction Engineering, H. Scott Fogler, Prentice Hall, 5th Edition,
- 4. Mass Transfer with Chemical Reactions, J. M. Coulson and J. F. Richardson, Chemical Engineering Series, Elsevier, 6th Edition, 2005.
- 5. Process Intensification in Chemical Engineering, Andrzej Stankiewicz, Tom Van Gerven, Wiley-VCH, 2008.
- 6. Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Wiley-VCH, 2nd Edition, 2008.
- 7. hemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, J.M. Coulson, J.F. Richardson, R.K. Sinnott, Elsevier, 6th Edition, 2005.

Guidelin	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation			
1	LMS Test / Assignment on Problem solving through Computational Software / Tutorial / Group presentation on real life problem	20		

	Sen	•	•	nical Engineering		
			4024: Process Ut			
Teaching Scheme: Credit : Examination Scheme:						
Theory:03hrs/week		03	Continuous Comprehensive Evaluation: 20 Mar		luation: 20 Marks	
		InSem Exam: 20) Marks	
			EndSem Exan			
			Total: 100 Ma			
Prerequi	isites: Basics o	f thermodynamic	es, fluid mechanic	s, heat transfer, and	d unit operations.	
Course (Objectives:					
1. Pr	ovide knowled	ge of various pro	cess utilities and the	heir role in chemica	l process industries	
ine	cluding classifi	cation, identifica	tion, and econom	ic impact.		
2. U1	nderstand wate	r and steam syste	ems, including wa	nter treatment, boile	er feed water, steam	
ge	neration, and u	tilization in proc	ess plants.			
3. St	udy non-stean	heating system	is such as hot of	ils, thermic fluids,	and fired heaters	
		-	on, and industrial			
	=		=	=	ems, chilling plants	
			systems in proce			
Course O	outcomes: On o	completion of the	e course, students	will be able to		
	Course Outc	omes			Bloom'sLevel	
CO1	Apply know impact.	vledge of process	utilities and asses	ss their economic	3-Apply	
CO2	Analyze wa	ter and steam sys	stems for efficient	t utilization.	4-Analyze	
002	Examine n	on-steam heatin	g and other uti	lity systems for	4 4 1	
CO3	industrial ap				4-Analyze	
CO4		and optimize y, and reliability.	• •	for efficiency,	5-Evaluate	
		COU	JRSE CONTENT	ΓS		
Unit I	Introduction	of utilities:		(07hrs)	CO1	
Role of	Process Utiliti	es in process in	dustries, Classific	cation of process u	tilities, Impact on	
Project e	conomics, Col	our codes used fo	or identification of	f process utilities.	-	
Unit II	Water			(07hrs)	CO2	
Water ch	aracteristics, c	onditioning and t	reatment methods	of water for proces	ss industries, water	
softening	g techniques, D	De-mineralized W	ater, Application	s of water, Process	s water, and boiler	
feed wat	er (BFW) and	its characteristics	s, cooling Water,	recycling aspects of	of water from blow	
downs			•	_		
Unit III	Steam			(07hma)	CO2 CO4	
				(07hrs)	CO2, CO4	

(Autonomous from Academic Year 2022-23)

Properties of steam, Characteristics properties, classification, selection and industrial applications Steam calculations, application of steam systems in chemical process plants, design of efficient steam heating systems, Superheated steam, condensate utilization, flash steam, steam traps, Steam generators, classification, construction features, Boiler Accessories and Mountings, Economiser, super-heater, pre-heater

J	Jnit IV	Non-steam heating systems	(07hrs)	CO3
	Hot Oil/S	pecialized Heat Transfer Fluids/Thermic Fluids	, Mineral oils, Dov	vtherm - Synthetic
(Organic	Fluids, Dowcal - Inhibited Glycols, Syltherr	n - Silicone Fluic	ls, Characteristics
	properties	s, classification, selection and industrial applicat	ions Fuels, Fired he	aters

Unit V Other utilities (07hrs) CO3, CO4

Air: Necessity, process air, instrument air, compressed air, air-water vapour mixture, psychrometry, Characteristics properties, classification, selection and industrial applications, Characteristics of air and air receivers, Inert gases, Inert gas generation Electrical Power: HT/LT, Emergency power. Inverters, DG sets. Etc. Vacuum system engineering, Chilling plant, refrigeration, Emergency Drives Identification

ReferenceBooks

- 1. Chemical Plant Utilities, Sathiyamoorthy Manickkam, LAP LAMBERT Academic Publishing, 1st Edition, 2016.
- 2. A Textbook of Thermal Engineering, R.S. Khurmi, J.K. Gupta, S. Chand Publishing, 1st Edition, 2010.
- 3. Chemical Engineering, Vol. 6: Chemical Engineering Design, J.M. Coulson, J.F. Richardson, R.K. Sinnott, Elsevier Butterworth-Heinemann, 6th Edition, 1999. Steam Generators and Waste Heat Boilers: For Process and Plant Engineers, V. Ganapathy, CRC Press, 1st Edition, 2017.
- 4. Fuels and Combustion, Samir Sarkar, Orient BlackSwan, 1st Edition, 2009.

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted	
1	LMS Test / Assignment on Problem solving through Computational Software / Tutorial / Group presentation on real life problem	20	