

K. K. Wagh Institute of Engineering Education and Research, Nashik

Curriculum B.Tech (2022 Pattern)

Electronics and Telecommunication Engineering w.e.f. AY 2025-2026

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous w.e.f. A.Y.2022-23)

Details of Course Structure:2025-26 Final Year B.Tech (2022Pattern)Semester :VII

Board of Studies in Electronics & Telecommunication Engineering

Course Code	Cour se Type	Title of Course	Teaching Scheme Hrs./week			Evaluation Scheme and Marks							Credits				
			ТН	TU	PR	In Sem	End Sem	CCE	TU	TW	PR	OR	Total	ТН	TU	PR	Total
ETC224001	DCC	Optical Communication	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ETC224002	DCC	Computer Networks	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ETC224003	DCC	Lab Work Optical Communication	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
ETC224004	DCC	Lab Work Computer Networks	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
ETC224005	DEC	Elective-4:	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ETC224006	DEC	Elective-5:	2	-	-	20	30	-	-	-	-	-	50	2	-	-	2
ETC224007	ASM	Research Methodology	2	-	-	20	60	20	-	-	-	-		3	-	-	3
ETC224008	LHS M	Innovation and Entrepreneurship	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2
ETC224009	PSI	Project Phase-2	-		8	-	-	-		100	-	50	150	-	-	4	4
		Total	17	1	8	100	300	150	100	100	75		800	17	1	4	22

Elective4		Elective –5				
Course Code	Title of Course	Course Code	Title of Course			
Communication	MIMO Communication Systems	Signal Processing	Speech & Audio Processing			
Automation	Robotics	Advance VLSI Design	VLSI Testing and Testability			
Embedded System	Real Time Operating System	Recent trends	Climate change and Green Energy			
AI	Deep Learning and Big Data Analysis	e-Mobility	Drives and Control			

Name and Sign of BoS Chairman

Sign of Director

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous w.e.f. A.Y.2022-23)

Details of Course Structure:2025-26 Final Year B.Tech (2022Pattern)Semester :VII

Board of Studies in Electronics & Telecommunication Engineering

Course Code	Course Type	Title of Course	Teaching Scheme Hrs./week				Evaluation Scheme and Marks							Credits			
			ТН	TU	PR	In Sem	End Sem	CCE	TU	TW	PR	OR	Total	ТН	TU	PR	Total
ETC224011	DCC*	Network Security	3	-	-	-	60	40**	-	-	-	-	100	3	-	-	3
ETC224012	DCC*	Elective 6	3	-	I	-	60	40**	1	-	-	-	100	3	I	-	3
ETC224013	LHSM	Financial Literacy	2	-	I	-	-	50	1	-	-	-	50	2	I	-	2
ETC224014	PSI	On-Job Training	-	-	24	-	-	-	-	200	-	100	300	-	-	12	12
		Total	8	-	24	-	120	130	-	200	-	100	550	8	•	12	20

* Considering Internship of 6 months, these courses to be offered in online mode.

** Four Written Assignments/LMS Tests of 10 marks each, will be conducted at the end of each month and one at the end of semester, when students will report for review/presentation of Internship work.

Elective6	
Course Code	Title of Course
Signal Processing	Biomedical Signal Processing
Advance VLSI Design	Mixed Signal Design
Recent trends	Advanced Mobile Communication
e-Mobility	e Mobility and Charging Infrastructure

Name and Sign of BoS Chairman

Sign of Director

ETC224001: Optical Communication										
Teach Scheme	-	Credit Scheme:	Examinat	tion Scheme:						
Theor hrs/wee	•	03	Evaluation In Sem E	ious Comprehensive on: 20 Marks Exam: 20 Marks n Exam: 60 Marks						
Prere	quisite (Courses, if any: Fiber Optic Communication	on							
Comp	anion c	ourse, if any: Lab work in Optical Commu	nication							
so le 3. D 4. D 5. A	election ength, bi Design th Ilustrate Analyze	e fundamental knowledge of optical source of appropriate source and detector in the op t rate, wavelength and fiber specifications he fiber optic link using power budget and r the optical sensors and optical networks w the performance of optical system using sir omes: On completion of the course, student	otical link de ise time bud vith applicati nulation tool	sign for given link get. ons. l.						
		Course Outcomes		Bloom's Level						
CO1	optical	prehend the light propagation phenomenor fiber and reasons behind channel impairment s types of fibers.		2-Understand						
various types of fibers.Demonstrate the characteristics of various optical components and their use in optical communication network. (sources, detectors, couplers, isolators,3- Apply										
	multiplexers, switches, filters, etc.)Understand the principal of operation of SONET, WDM network, access network and some future optical2-Understand									
CO3	networ	1 1 1	1, W DW	2-Understand						
CO3 CO4	networ networ Solve	k, access network and some future optical		2-Understand 3- Apply						
	networ networ Solve assign Desig	k, access network and some future optical king technologies. network survivability and wavelength rout	ing and							
CO4	networ networ Solve assign Desig	k, access network and some future optical king technologies. e network survivability and wavelength rout ment problems in optical network. gn and Evaluate the performance of a fiber	ing and	3- Apply						

Ontical Fiber	s. Types - single mode fiber multi mode fi	iber graded i	ndex fiber photonic						
Optical Fibers: Types - single mode fiber, multi mode fiber, graded index fiber, photonic crystal fiber; Optical fiber modes and configurations, Signal degradation in optical fiber:									
Attenuation, Di	• •	ai degradatio	ni ili optical filoci.						
Unit II	Optoelectronic Devices:	(08 hrs)	COs Mapped -						
Unit H	Transmitters and Receivers	(00 m s)	CO2						
-	smitter: Light Emitting Diode - structure	-	• -						
Laser – laser diode mode and threshold condition, rate equation, quantum efficiency and									
resonant frequency; Modulation-OOK, SCM.									
Optical Detectors: pin photo detector, Avalanche photodiode, Photo detector Noise;									
demodulation – Direct detection, coherent detection									
Unit III	Optical Switches and cross connects	(08 hrs)	COs Mapped – CO3						
Optical Network Components: Coupler, Isolator, Multiplexers, Filters, Optical switches, Optical cross connects, Optical amplifiers: EDFA-SOA									
Unit IV	Optical Networks	(08 hrs)	COs Mapped – CO4						
First generati	ion optical network: SONET/SDH – mult	tiplexing, ph	ysical layer, infra						
•	ork survivability Second Generation optic		-						
	signment and Routing; Access Network: H								
network archite	cture								
Unit V	Fiber measurements & optical	(08 hrs)	COs Mapped –						
	sensors		CO5						
	rements: Attenuation and Dispersion Meas		1 / 1 1						
—	Link Design: Digital Systems: Power budge	et, rise time t	budget; Analog						
systems	ors: Classification, measurement of various	noromotora	and concor						
applications	ors: Classification, measurement of various	parameters							
applications	The AD set of								
	Text Books								
	e, V Mishra, "Fiber Optic Communication:	System and	Components", 2 nd						
	Wiley, 2019.								
	ser, "Optical fiber communications", 5 th ed								
	maswami, Kumar Sivarajan, Galen Sasaki,		tworks: a practical						
perspecti	ve", Morgan Kaufmann Publishers, 3 nd ed.,	, 2009.							
	Reference Books		the second						
	awal, "Fiber-Optic Communication System								
	ior, "Optical fiber communications-princip 3 rd ed., 2013.	les and pract	ices", Prentice Hall						
· · · · · · · · · · · · · · · · · · ·	"Optical communication systems", Prentic	e Hall of Ind	lia 2001						
4. Joseph C	. Palais, "Fiber Optic Communication", PE	ARSON ED	UCATION. 5 th ed.						
2011.	,		, • •••,						
	h Mukherjee, "Optical WDM Network", S	pringer, 200	6						
		-							

	Strength of CO-PO Mapping PO													CO-PSO Mapping PSO	
	1	1	3	4	5	6	7	8	9	1 0	11	1 2	1	2	
CO1	3	2	-	2	2	-	-	-	-	-	-	-	2	2	
CO2	3	2	2	-	3	-	-	-	-	-	-	-	3	3	
CO3	2	2	2	-	2	-	-	-	-	-	-	-	2	2	
CO4	3	3	2	2	3	-	-	-	-	-	-	-	2	3	
CO5	3	2	3	2	3	-	-	_	-	2	2	-	3	3	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation									
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10								
2	Performance in LMS Tests (5 tests, one on each unit)	10								
	Total	20								

	Final	Y. B. Tech. Pattern 2022 Set	mester: VII			
		ETC224002: Computer Netv	vorks			
Teachi	ing Scheme:	Credit Scheme:		ion Scheme:		
Theor	y :03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			
	uisite Courses, if a communication.	ny: Knowledge of Basic Electr	ronics, Analog	Communication,		
Course (Objectives:					
1. Buil	d an understanding	of the fundamental concepts &	uses of compu	ter networking.		
conc 3. List	ept of layered appro the layers of the TC	b describe how computer netwo bach. P/IP and OSI model and descri ign simple computer networks.	-			
	1	mpletion of the course, students	s will be able t	0—		
		Bloom's Level				
CO1	addressing.	cepts of Computer Networks ar	• 1	2-Understand		
CO2	data communicat	king of controlling techniques t ion using data link layer protoc	ols.	2-Understand		
CO3	netting to design			3-Apply		
CO4		naviour and performance of dat g TCP/UDP Protocols.	a	2-Understand		
CO5	Illustrate the use	e of protocols at application lay	er.	2-Understand		
		COURSE CONTENTS				
Unit I	Introduction to Physical layer:	ComputerNetwork and	(07 hrs)	COs Mapped - CO1		
&TCP/I Logical	P protocol suite, net & port address, Pro	outer Network, Types of network work architectures introduction tocols and Standards. Data rate ching systems, Circuit switchin	n, Addressing t limits, Transn	types-Physical,		
Unit II	Data link layer:(07 hrs)COs Mapped- CO2					
Data li	nk control, Framing	, Flow & Error control Protoco	ls, noiseless cl	nannels, Noisy		

channels, Multiple access techniques-random access, controlled access & Channelization protocols, Ethernet types-bridged, Switched, Full duplex, Fast & gigabit Ethernet. Hub, router, repeater, Gateway

Unit	Network Layer	(09 hrs)	COs Mapped
III			– CO3

Network Layer: network-layer performance- Delay, Throughput, Packet Loss, Congestion Control Concept of IP Address, IPv4 address, IPv6 address, Address mapping-ARP, RARP, IPv4 datagram detail format, IPv6 datagram detail format, IP Address : Netmask, Subnet; CIDR; Design of a LAN; Subnetting Problems. ICMP, IGMP, Network layer issues like Delivery, forwarding, intradomain and Interdomain routing, Routing algorithms like Shortest path routing, Flooding, Distance Vector Routing, Link State Routing, Path vector routing

Unit IV	Transport Layer:	(06 hrs)	COs Mapped – CO4
------------	------------------	----------	---------------------

Transport layer: Process to process delivery, Connection oriented & Connectionless Transport, User Datagram Protocol, Transmission Control Protocol, Difference and applications, congestion control and Quality of Service.

Unit V	Application Layer:	(06 hrs)	COs Mapped – CO5
-----------	--------------------	-------------------	---------------------

Introduction to Application Layer, Application layer protocols and applications like Ping, FTP, telnet, World Wide Web and HTTP, SMTP, SNMP, Trace route, TFTP, BOOTP, DNS, DHCP, POP, IMAP, E-mail, Introduction of Software-Defined Networking (SDN)

Text Books

- 1. Behrouz A. Foruzan, "Data communication and Networking", Tata McGraw-Hill, 5th Edition.
- 2. Achyut S Godbole, "Data Communication and Networking", Tata McGraw-Hill, 1st Edition

Reference Books

1. Andrew S. Tannenbaum, "Computer Networks", Pearson Education, 4 th Edition, 2003

2. Wayne Tomasi, "Introduction to Data Communication and Networking", Pearson Education, 1st Edition.

3. Greg Tomsho, Ed Tittel, David Johnson. "Guide to Networking Essentials", Thomson India Learning, 5 th Edition, 2007.

4. William Stallings, "Data and Computer Communication", Pearson Education, 8th Edition, 2000

5. James F. Kurouse & W. Rouse, "Computer Networking: A Top down Approach", Pearson Education.

	Strength of CO-PO Mapping												CO-PSO	
													Mapping	
PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO4	3	3	-	-	-	-	-	-	-	-	-	2	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Ryaluation										
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10									
2	Performance in Unit Tests (5 tests, one on each unit)	10									
	Total	20									

	Final Year	B. Tech.2022 Patter	n Semester: VII						
	ETC224003:	Lab work in Optica	l Communication						
Teach	ning Scheme:	Credit Scheme:	Examination Scl	Examination Scheme:					
Pract	ical :02hrs/week	01	Practical / Oral Exam: 25Marks TUT/ TW : 25 Marks						
Prere	equisite Courses, if any:								
Comp	panion course, if any: Opti	cal Communication							
3.	losses and performance pa Analyze and select approp effective communication. Apply link budgeting tech installation, and maintenar se Outcomes: On completion	riate optical sources, c niques and use practication the of optical networks	al field instruments s.						
	Course Ou	utcomes	Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)					
CO1	1	late various system	2- Understand 3-Apply	1-Imitation					
CO2	losses and performance parameters. 3-Apply								
CO3	Perform link budgeting like OTDR for testing, maintenance of optical	installation, and	3-Apply	3- Precision					

	List of Laboratory Experiments									
Sr. No.	Laboratory Experiments	CO Mapped								
1	Determine the numerical aperture of the provided multimode step- index optical fiber.	CO1								
2	Record and analyze the electrical and optical behavior of a selected optical source .	CO2								
3	Observe and plot the response characteristics of a chosen photo detector (PN, PIN, or phototransistor).	CO2								

4	Evaluate the attenuation and bending loss in optical fiber cables.	CO1,CO2					
5	Set up and demonstrate the transmission of analog signals using an optical communication link.	CO2					
6	Set up a functioning digital optical communication link.	CO2					
7	Explore and understand the working of a practical field instrument like an OTDR.	CO3					
8	Tutorial on optical link budget: optical power and rise time budget of a link to assess system performance.	CO3					
	Guidelines for Laboratory Conduction						

- 1. Teacher will brief the given experiment to students, its procedure, observations calculation, and outcome of this experiment.
- 2. Equipment and kits required for the allotted experiment will be provided by the lab assistants using SOP.
- 3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistants.
- 4. After performing the experiment students will check their readings, calculations from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

R1: Timely completion of experiment (10 Marks)

R2: Understanding of experiment (10 Marks)

R3: Presentation / clarity of journal writing (10 Marks)

Total 30 marks for each experiment and average marks of all experiments will be converted into 25 marks of term work.

	Strength of CO-PO Mapping											CO-F Mapp			
	РО													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	2	-	-	-	-	-	-	-	3	3	
CO2	3	2	3	2	3	-	-	-	-	-	-	-	3	3	
CO3	3	3	2	3	3	-	-	-	-	2	2	-	3	3	

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

		B. Tech. 2022 Pattern S 4: Lab work in Compu		
Teaching	g Scheme:	Credit Scheme:	Examination S	scheme:
Practica	l : 02hrs/week	01	Practical Exam Term Work: 2	
Digital co	isite Courses, if any: Kr ommunication. ion course, if any: Com		conics, Analog Co	mmunication,
Course (Outcomes: On completion	on of the course, students	s will be able to-	
	Course	Dutcomes	Bloom's Level (Cognitive domain)	Bloom's Level (Psychomotor domain)
CO1	To use the networkin implement LAN using		2- Understand 3-Apply	2-Manipulation
CO2	To implement variou DHCP, FTP and RIP simulator. Also to imp use it.	using network	3-Apply	3-Precision
CO3	Use wireshark software observe the format of	·	2- Understand 3-Apply	3-Precision

	List of Laboratory Experiments								
Sr. No.	Laboratory Experiments	CO							
110.		Mapped							
1	How can the analysis of fundamental and advanced networkingcommands be used to interpret network behavior, diagnose connectivity issues, and validate protocol configurations based on observed command outputs?	1							
2	Implement a LAN using Cisco Packet Tracer by simulating a network with appropriate devices. Design the LAN using a star topology and verify connectivity between two computers within the network.	1							
3	Design and configure a LAN with appropriate protocol to automatically assign IP addresses to client devices using Cisco Packet	2							

	Tracer.								
4	Considering the requirements for secure and efficient file sharing within a simulated LAN environment, how would you implement and configure an FTP server using Cisco Packet Tracer, and what methods would you use to verify the success of file transfers across multiple client systems?.	2							
5	How would you use a network simulator to configure and optimize a router with the RIP routing protocol in a given network topology?	¹ 2							
6	How would you approach the installation and configuration of a network service like TELNET to enable remote Telnet communication between systems?								
7	How can you capture and analyze live network traffic from an interface using packet capture tools, and apply various filters to the packets?	3							
8	Capture and note the nacket of HTTP /FTP /Telnet / DHCP Protocol								
I	Guidelines for Laboratory Conduction								
 Equassi Studiund After After After 	culation, and outcome of this experiment. hipment and kits required for the allotted experiment will be provided istants using SOP. dents will perform the allotted experiment in a group (two students is ler the supervision of faculty and lab assistants. er performing the experiment students will check their readings, calculated teacher. er checking they have to write the conclusion of the final result. Guidelines for Student's Lab Journal e-up should include title, aim, and diagram, working principle, procedure vations, graphs, calculations, conclusion and questions, if any.	in each group) culations from							
	Guidelines for Termwork Assessment								
R2: U R3: H Total	Fimely completion of experiment (10 Marks) Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) 1 30 marks for each experiment and average marks of all experiment rted into 25 marks of term work	ments will be							
R2: U R3: H Total	Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) 1 30 marks for each experiment and average marks of all experiment rted into 25 marks of term work.	CO-PSO							
R2: U R3: H Total	Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) 1 30 marks for each experiment and average marks of all experiment rted into 25 marks of term work. Strength of CO-PO Mapping	CO-PSO Mapping							
R2: U R3: H Total	Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) 1 30 marks for each experiment and average marks of all experiment and average marks of all experiment rted into 25 marks of term work. Strength of CO-PO Mapping PO 1 2 3 4 5 6 7 8 9 10 11 1	CO-PSO							
R2: U R3: H Total conver	Understanding of experiment (10 Marks)Presentation / clarity of journal writing (10 Marks)1 30 marks for each experiment and average marks of all experimented into 25 marks of term work.Strength of CO-PO MappingPO1 2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 10 11 23 3 3 - 3 2	CO-PSO MappingPSO1233							
R2: U R3: F Total conver	Understanding of experiment (10 Marks) Presentation / clarity of journal writing (10 Marks) 1 30 marks for each experiment and average marks of all experiment rted into 25 marks of term work. Strength of CO-PO Mapping PO 1 2 3 4 5 6 7 8 9 10 11 1 2	CO-PSO MappingPSO12							

	Final Year.	B. Tech.Pattern 2022	Semester: VII	
	ETC224005	5A: MIMO Commun	ication Systems	
Teach	ing Scheme:	Credit	Examination	Scheme:
		Scheme:		
Theor	y :03 hrs/week	03	Continuous C Evaluation: 20	omprehensive Marks
			InSem Exam:	
			EndSem Exar	n: 60 Marks
Prerec	quisite Courses, if any: (Communication Engine	eering, Software d	efined Radio,
Comp	anion course, if any:			
	e Objectives:			
	rstand the basic principles ze the MIMO system in t			eam forming
-	odologies	erms of space-time co		
3. Chani	nel estimation for single c			
	entify the role of diversity	and MIMO technique	es in combating the	e effect of fading
	aximizing the capacity. gnize the most recent tree	ds in the broad area of	f wireless commu	nication
	e Outcomes: On complete			
		Course Outcomes		Bloom's
		Level		
001	1	MIMO antenna-based		2- understand
CO1	communication system Single Input Single Ou		een MIMO and	
C03		and working of MIM	O transceivers in	2- understand
CO2	wireless networks.			
CO3	÷	iversity and MIMO tec	-	4- Analyze
CO4	combating the effect of Analyze beam formir	ig schemes for MIMO		4- Analyze
	-	vances in MIMO wirel	-	2- understand
CO5	communications.			
		COURSE CONTEN	ITS	
Unit I	Introduction		(06 hrs)	COs Mapped - CO1
and ext MIMO	w of SISO fading commu ended channels, Frequen channels, Ergodic and ou es on the capacity	cy selective and corre	elated channel mo	odels, Capacity of
Unit II	MIMO wireless com	munication	(06 hrs)	COs Mapped - CO2
	l			

MIMO channel and signal modeling, A fundamental trade-off, MIMO transceiver design, MIMO in wireless networks, MIMO in wireless standards. Equalizer Noise Enhancement, Equalizer Types, Folded Spectrum and ISIFree Transmission, Linear Equalizers, Zero Forcing (ZF) Equalizers, Minimum Mean Square Error (MMSE) Equalizer, Maximum Likelihood Sequence Estimation., Decision-Feedback Equalization

Unit III	MIMO Diversity and Spatial Multiplexing	(06 hrs)	COs Mapped – CO3						
Diversity, Exploiting multipath diversity, Transmit diversity, Delay diversity, Cyclic delay diversity, Space time codes, The Alamouti scheme, The rake receiver, Combining techniques, Spatial Multiplexing, Spectral efficiency and capacity, Transmitting independent streams in parallel, Mathematical notation Unit									
Unit IV	MIMO Beam Forming	nd combining, Disadvantages of pre-cod							
The generic MIMO problem, Eigenvalues and eigenvectors, Pre-coding and combining in MIMO systems, Advantages of pre-coding and combining, Disadvantages of pre-coding and combining, Codebooks for MIMO, Beam forming principles, Interference cancellation, Switched beam former, Adaptive beam former, Narrowband beam former, Wideband beam former									
Unit V	Advances in MIMO wireless communications	(06 hrs)							
	modulation, MIMO based cooperative coner MIMO, cognitive-femtocells and large MIMO								
	Text Books								
Comn 2. Fitzek and A 3. Arogy	on, Erik G. and Petre Stoica, Space-Tin nunications, Cambridge University Press (2008) , Frank H.P., Katz and Marcos D., Cooperation pplications, Springer (2007). vaswami., Paulraj, Gore, Dhananjay and Nabar ess Communications, Cambridge University Pres). on in Wireless Ne , Rohit., Introduc	etworks: Principles						
	Reference Books								
Reference Books 1. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press 2005 2. Hamid Jafarkhani, "Space-Time Coding: Theory and Practice", Cambridge University Press 2005 3. Paulraj, R. Nabar and D. Gore, "Introduction to Space-Time Wireless									
4. E.G. I Camb5. Ezio I	nunications", Cambridge University Press 2003 Larsson and P. Stoica, "Space-Time Block Cod oridge University Press 2008 Biglieri, Robert Calderbank et al "MIMO Win ersity Press 2007	ling for Wireless							

		Strength of CO-PO/PSO Mapping												
		PO									PS	0		
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	
CO1	3	-	-	-	-	-	-	-	-	-	-	2	-	3
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	3

CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	3
CO4	3		-	-	-	-	-	-	-	-	-	-	-	3
CO5	3		-	-	-	-	-	-	-	-	-	2	-	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10					
2	Performance in Unit Tests (5 tests, one on each unit)	10					
	Total	20					

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

B. Tech. Pattern 2022 Semester: VII							
ETC224005B: Robotics							
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Theory :03	03	Continuous Comprehensive					
hrs/week		Evaluation: 20 Marks					
		InSem Exam: 20 Marks					
		EndSem Exam: 60 Marks					
Prerequisite Courses, if system	any: Mechatronics, Problem	n solving using Python, Control					
Companion course, if a	ny:						
Course Objectives:	nental Concepts of Robotics.						

To Comprehend Fundamental Concepts of Robotics.
 To Analyze Robot Kinematics and Develop Forward Kinematic Solutions.

3. To Understand Role of drives, grippers in robot design and robot programming Concepts.

	Course Outcomes			Bloom's Level		
CO1	Explain the fundamentals of robots and robot kinematics.					
CO2 Explain robot manipulators using forward kinematics, desired end- effector poses using inverse kinematics and plan basic robot trajectories.						
CO3	Discuss drives and grippers for robotics applications.					
CO4	Describe the principles of robot dynamics, basic control schemes, and the vision in robotics.					
CO5	Illustrate advanced concepts in robotics, including robot vision, motion planning, intelligent robots, and robotics programming.					
	COURSE CONTENTS					
Uni t 1	Foundations of Robotics	(08 hrs)	COs - CO	Os Mapped CO1		
of Robo Robot A Configu Specific Introduc	tion to Robots:, Definition and Scope of Robotics Au ts (Industrial, Service, Mobile, etc.), Applications of Anatomy: Manipulators, End Effectors, Actuators, rations: Cartesian, Cylindrical, Spherical, Articulated ations: Degrees of Freedom (DOF), Workspace, Accu tion to Robot Kinematics:, Coordinate Frames and Tra eneous Transformations, Rotation Matrices and Transla	f Robotics in Sensors, Co (Revolute), aracy, Repeat insformations	n vari ntroll SCA abilit	ous fields, ers, Robot RA, Robot		

Uni	Robot Forward, Inverse Kinematics &	(7 hrs)	COs Mapped
t 2	Trajectory Planning		- CO2
Forward	Kinematics:, Denavit-Hartenberg (D-H) Convention		

Assigning Coordinate Frames to Robot Links

Derivation of Transformation Matrices, Forward Kinematic Equations for common robot configurations (e.g., 2R, 3R planar, simple serial manipulators), Examples and Problem Solving. **Inverse Kinematics:** Problem Formulation

Existence and Multiplicity of Solutions, Challenges and Limitations of Inverse Kinematics, **Trajectory Planning:**

Joint-Space vs. Cartesian-Space Trajectories, Point-to-Point Motion,

Unit 3 Robot Drives and Grippers	(7 hrs)	COs Mapped - CO3
----------------------------------	---------	---------------------

Drives – Basic types of drives. Advantages and Disadvantages of each type. Selection / suitability of drives for Robotic application. Controllers, Types of Controller and introduction to close loop controller Drives and Control: Understanding drive and control systems for motors, including PWM (Pulse Width Modulation) and other control techniques.Designing and building gear trains and belt drives.

Grippers, Mechanical Gripper-Grasping force, mechanisms for actuation, Magnetic gripper vacuum cup gripper-considerations in gripper selection & design.

		/ -	Cos
Unit 4	Robot Dynamics, Control, and Sensing	(7 hrs)	Mapped–
			CO4

Robot Dynamics: Introduction to Robot Dynamics, Lagrangian Formulation (Qualitative Overview)Joint Torques and Forces, Inertia Matrix, Coriolis and Centrifugal Forces (Conceptual Understanding)

Control Scheme: Open-Loop vs. Closed-Loop Control, Basic Feedback Control Principles (P, PI, PID - Introduction)

Robot Vision: Introduction to Robot Vision, Basic Concepts of Image Acquisition, Basic Image Processing Techniques (Thresholding, Edge Detection - Conceptual), Feature Extraction (Introduction), Object Recognition (Basic Concepts)

Unit 5	Advanced Robotics and Applications	(7 hrs)	COs Mapped – CO5
\mathbf{D}			

Robot Motion Planning: Path Planning vs. Trajectory Planning, Introduction to Motion Planning Algorithms **Intelligent Robots:** Introduction to Artificial Intelligence in Robotics, Basic Concepts of Robot Learning and Decision Making

Programming and Languages: Methods of robot programming, Introduction to various languages such as RAIL, VAL II, LISP, Python and MATLAB. Introduction to tools like RoboDK

Summary of Robotics: Review of Key Concepts and Applications, Future Trends and Research Directions in Robotics

Text Books

Fundamentals of Robotics by D.K. Pratihar, Narosa Publishing House, New-Delhi, 2017
 Introduction to Robotics: Mechanics and Control (3rd Edition)

Reference Books

- 1. Robotics by K.S. Fu, R.C. Gonzalez, C.S.G. Lee, McGraw-Hill Book Company, 1987
- 2. Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing Company, 1986
- 3. Robotics Modelling, Planning and Control, Bruno Siciliano, Springer

	Strength of CO-PO/PSO Mapping													
	PO									PS	50			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO2	3	3	-	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	2	1	-	-	-	1	I	-	-	-	3	3
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	3
CO5	3	3	2	-	3	-	-	-	-	-	3	3	2	2

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10		
2	Performance in Unit Tests (5 tests, one on each unit)	10		
	Total	20		

В	. Tech. Pattern 2022 Se	mester: VII
ETC2	224005C: Real Time Ope	erating Systems
Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :03 hrs/week	03	Continuous Comprehensive
-		Evaluation: 20 Marks
		InSem Exam: 20 Marks
		EndSem Exam: 60 Marks
Prerequisite Courses, if a	ny:. 32 bit Microcontrolle	ers and knowledge of OS
Companion course, if any	7 : —	
Course Objectives:		
1. To learn Programming	Concepts	
2. To understand RTOS (Concepts	
3. To learn Structure of u	COS – II	
4. To learn Synchronizat	ion in μCOS- II	
5. To learn Communicati	on in µCOS- II	

Course	e Outcomes: On completion of the course, students will be able t	0—					
	Course Outcomes	Bloom's Level					
CO1	understand concept of programming concept	2					
CO2	understand RTOS Concepts	2					
CO3	understand and apply concept multitasking in RTOS	3					
CO4	apply concept of semaphore and mutual explosion	3					
CO5	apply concept of mailbox, message queue and porting	3					
COURSE CONTENTS							
Unit I	Fundamentals of Software Development	COs Mapped - CO1					
Embedd Program	Software Architectures, Software Developments Tools, Programming Concepts, Embedded Programming in C and C++, Queues, Stacks, Optimization of Memory needs, Program Modeling Concepts, Software development Process Life Cycle and its Model, Software Analysis, Design and Maintenance						
Unit II	RTOS Concepts	COs Mapped - CO2					
Multitas Static ar	ound and background systems, Critical Session, Shared resources sking, Context switching, Kernels, Pre-emptive and non-preempti and Dynamic Priorities, Priority inversion, Mutual exclusion, Sync mmunication mechanisms, Interrupts	ve Schedulers,					
Unit III	Structure of uCOS – II	COs Mapped – CO3					

Kernel	Kernel Structure , Tasks, Task States, TCB, Ready list, Task Scheduling, Task Level										
Context	Switching, Interrupts, Clock Tick, Initialization, Starting the OS.	Task									
Manage	ment, Time Management										
Unit IV	Synchronization in µCOS- II	COs Mapped – CO4									
Semap	hore Management, Mutual Exclusion Semaphores, Event Flag Ma	inagement,									
Message	e Mailbox Management, alternate uses of Mailbox. Message Queu	ue Management,									
Alternat	e use of Message Queue										
Unit V	Communication in µCOS- II.	COs Mapped – CO5									
Memor	y Management, Porting of µCOS- II,Case study : Automatic Cru	ise control system									
	Text Books										

Text Books

- Jean J. Labrosse, "MicroC OS II, The Real-Time Kernel", 2nd edition, CMP Books.
 Raj Kamal, "Embedded Systems Architecture, Programming and Design" 2nd edition, Mc Graw Hill

	Strength of CO-PO Mapping													
	PSO													
	1	1 2 3 4 5 6 7 8 9 10 11 12												2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	3	-	-	-	-	-	-	2	2	3
CO4	3	3	-	-	3	-	-	-	-	-	-	2	2	3
CO5	3	3	-	-	3	-	-	-	-	-	-	2	2	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Evaluation										
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10									
2	Performance in Unit Tests (5 tests, one on each unit)	10									
	Total	20									

	B. Tech. Pattern 2022 Sem	ester: VII
ETC2	24005D: Deep Learning and l	Big Data Analysis
Teaching	Credit Scheme:	Examination Scheme:
Scheme:		
Theory :03	03	Continuous
hrs/week		Comprehensive
		Evaluation: 20 Marks
		InSem Exam: 20 Marks
		EndSem Exam: 60 Marks
Prerequisite Courses,	if any: Basic knowledge of Ma	chine Learning, Programming
(Python), and Data Struc	tures.	
Companion course, if	any: —	
Course Objectives:		
1. To understand the	fundamental concepts of Deep	Learning and Big Data.
2. To explore various	architectures and algorithms in	n Deep Learning.
3. To comprehend th	e tools and technologies used ir	n Big Data processing.
4. To apply Deep Lea	arning techniques to Big Data s	cenarios.
5 To gain hands-on	experience with frameworks lik	e TensorFlow PyTorch Hadoon

5. To gain hands-on experience with frameworks like TensorFlow, PyTorch, Hadoop, and Spark.

Cours	e Outcomes: On completion of the course, students will be able to-	
	Course Outcomes	Bloom's
		Level
CO1	Understand the fundamental concepts and evolution of Deep Learning and Big Data, including their real-world applications.	2-Understand
CO2	Explain and analyze neural network architectures and optimization techniques used in deep learning.	3-Apply
CO3	Apply various deep learning models like CNNs, RNNs, LSTMs, and GANs to classification, prediction, and generation tasks.	3-Apply
CO4	Apply Big Data tools such as Hadoop, Spark, and NoSQL databases to process and analyze large datasets in practical scenarios.	3-Apply
CO5	Integrate deep learning models with Big Data technologies for real-time data analytics and develop scalable intelligent applications.	3-Apply

COURSE CONTENTS									
Unit	Introduction to Deep Learning and Big Data	COs Mapped -							
Ι		CO1							
Overvi	ew of Artificial Intelligence, Machine Learning, and Deep Learn	ing. Evolution and							
history	of Deep Learning. Introduction to Big Data: Characteristics (Vo	olume, Velocity,							

Unit II	Neural Networks and Optimization Techniques	COs Mapped - CO2
Biolog	ical Neuron vs. Artificial Neuron. Perceptron, Multilayer Percep	tron (MLP), and
Loss fu	opagation algorithm. Activation functions: Sigmoid, Tanh, ReL inctions: Mean Squared Error, Cross-Entropy. Optimization algo it, Stochastic Gradient Descent, Momentum, RMSProp, Adam.	•
Unit III	Deep Learning Architectures	COs Mapped – CO3
Convo	utional Neural Networks (CNNs): Architecture, Convolution an	d Pooling layers,
Applic	ations in image processing. Recurrent Neural Networks (RNNs)	: Architecture,
Vanish	ing Gradient Problem. Long Short-Term Memory (LSTM) and	Gated Recurrent
Units (GRUs). Autoencoders and Variational Autoencoders (VAEs). G	enerative
Advers	arial Networks (GANs): Architecture and applications.	
Unit IV	Big Data Technologies and Tools	COs Mapped – CO4
Hadoo	p Ecosystem: HDFS, MapReduce, YARN. Apache Spark: RDDs	s, DataFrames,
Spark S	SQL. NoSQL Databases: HBase, Cassandra, MongoDB. Big Dat	ta Streaming:
Apache	e Kafka, Spark Streaming. Data storage and retrieval techniques	in Big Data.
Unit V	Integration of Deep Learning with Big Data	COs Mapped – CO5
Implen	nenting Deep Learning models on Big Data platforms. Distribute	ed training of Deep
Learnii	ng models using Spark and Hadoop. Case studies: Real-world ap	plications
combir	ing Deep Learning and Big Data. Challenges and solutions in in	ntegrating Deep
Learnin	ng with Big Data technologies.	
	Text Books	
	dfellow, I., Bengio, Y., Courville, A. (2016). <i>Deep learning</i> . T 0262035613	he MIT Press. ISBN
2. Gér	on, A. (2019). Hands-On Machine Learning with Scikit-Learn, H	Keras, and
TensorF	low (2nd ed.). O'Reilly Media. ISBN-13: 978-1492032649	
3. Lesl	kovec, J., Rajaraman, A., Ullman, J. (2014). Mining of massive a	latasets. Cambridge
Univers	ity Press. ISBN-13: 978-1107077232	
4. Dan	nji, J., Wenig, B., Das, T., Lee, D. (2020). Learning spark (2nd e	ed.). O'Reilly Media
Inc. ISB	N-13: 978-1492050049	
	Reference Books	
	ning Spark – Jules Damji, Matei Zaharia.	
1. Leari		
2. Natu	ral Language Processingwith Transformers – Lewis Tunstall.	
2. <i>Natur</i> 3. Murp	ral Language Processingwith Transformers – Lewis Tunstall. hy, K. (2012). Machine learning: a probabilistic perspective. T 78-0262018029	he MIT Press. ISBN
 Natur Murp 13: 9 	hy, K. (2012). Machine learning: a probabilistic perspective. The	
 Natur Murp 13: 9 Hasti 	hy, K. (2012). <i>Machine learning: a probabilistic perspective</i> . The 78-0262018029	Data mining,

5. Han, J., Kamber, M., Pei, J. (2009). Data mining: Concepts and techniques (3rd ed.).

Morgan Kaufmann. ISBN-13: 978-9380931913

6. Nudurupati, S. (2021). *Essential PySpark for scalable data analytics: A beginner's guide to harnessing the power and ease of PySpark 3*. Packt Publishing. ISBN-13: 978-1800569722

 Ramcharan, K., Sundar, K., Alla, S. (2020). *Applied data science using PySpark: Learn the end-to-end predictive model-building cycle*. Apress. ISBN-13: 978-1484257121
 White, T. (2012). *Hadoop: The Definitive Guide* (3rd or 4th ed.). O'Reilly Media. ISBN-13: 978-1449311520 (for 3rd ed.) / 978-1491901632 (for 4th ed.)

9. Kreps, J., Narkhede, N., Rao, J. (2017). *Kafka: The Definitive Guide*. O'Reilly Media. ISBN-13: 978-1491936160

	Strength of CO-PO Mapping PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	_	_	_	_	_	_	_	_	_	3	_	_
CO2	3	3	_	_	_	_	_	_	_	_	_	_	3	3
CO3	3	3	_	_	3	_	_	_	_	_	_	_	_	3
CO4	3	2	—	—	3	_	_	_	_	_	_	_	3	3
CO5	3	3	_	_	3	_	_	_	_	_	—	3	3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Riveluetion										
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10									
2	Performance in Unit Tests (5 tests, one on each unit)	10									
	Total	20									

		ar B. Tech. Pattern 20			
Tooch		006A: Speech and Au Credit Scheme:	tio Processing Examination	Sahar	201
-	ing Scheme:		InSem Exam		
Ineor	y :02 hrs/week	02			
Duono	anisita Comana if annu	Disital signal musessi	EndSem Exa	<u>in: 50</u>	NIALKS
		Digital signal processi	ng		
	anion course, if any:				
	se Objectives:				1.1
	•	physiology of acoustic p	L	erceptio	on model.
		domain and extract var	-	•	1. 1.
		Iomomorphic system a	and analyze var	10us a	iudio coding
	ques with applications.	1			
		beech recognition techni			
5.10 and	alyze various audio cod	ing techniques with app	lications.		
Cours	a Quitagmas: On comp	ation of the course stud	lanta will be able	to	
Cours		etion of the course, stud Course Outcomes	ients will be able	10-	Bloom's
		Course Outcomes			Level
CO1	Model en electri	al aquivalant of Spaach	Droduction Sust	om	6
COI		cal equivalent of Speech			0
CO2		coefficients that can be	used to synthesiz	le or	6
	compress the spee		ing and dagading	- of	2
CO3	-	norphic vocoder for cod	ing and decoding	ç of	3
	speech.				6
CO4		res for automatic speake	er recognition		6
005	systems	·· · · · · · · · · · · · · · · · · · ·			2
CO5	Design basic aud	lio coding methods.	IDO		3
T I	E d 4-lf D	COURSE CONTEN	1	00)- M
Uni t I	Fundamentals of D	igital Speech	(09 hrs)	CO	Os Mapped -
-	Processing	ach Organa The Drace	a of Speech Dro		
		eech Organs, The Proces			
		uction- Uniform lossles			
		t lips, Digital models fo		-	
		Ear to the Perception of		-	•
•	•	Nerve Functions, Prope	erties of the Audi	tory in	erve. Diock
	tics of the Peripheral Au		(10 hmg))a Mannad
Uni t II	Time Domain mod Processing	eis for speech	(10 hrs)	CO	Os Mapped -
	0	derations, Short time en	erav evereae me		
		ilence discrimination us	•••	-	-
	•	el processing approach,			
-	• •	fference function, pitch			
		principles of Linear Pre	-	-	
		t Analysis using LPC Pa	-	. 1 11011	Dettettoll
Uni	Homomorphic Spe	· · ·	(09 hrs)		Ds Mapped
t III				- C	
Introdu	uction, Homomorphic S	ystems for Convolution	: Properties of the	e Com	plex

	m. Commutational Considerations. The Commu	- Constant	aaah Ditah							
-	m, Computational Considerations, The Comple									
	on, Formant Estimation, The Homomorphic Vo	1								
-	enhancement techniques: Single Microphone A		-							
Enhancement by re-synthesis, Comb filter, Wiener filter, Multi Microphone Approach.										
Uni t IVAutomatic Speech Recognition(08 hrs)COs Mapped - CO4										
Basic	pattern recognition approaches, parametric repre	esentation of Spe	ech, Evaluating the							
similari	ty of Speech patterns, Isolated digit Recognition	n System, Contin	uous word							
Recogn	ition system. Elements of HMM, Training & Te	esting of Speech	using HMM.							
Automa	tic Speaker Recognition: Recognition technique	es, Features that o	listinguish							
speaker	s, MFCC, delta MFCC, Speaker Recognition S	ystems: Speaker '	Verification							
System,	, Speaker Identification System And Performan	ce Metrics.								
Uni	Audio Codina	(05 hrs)	COs Mapped							
t V	Audio Coding		- CO5							
Audio	Coding, Lossy Audio coding, Psychoacoustics,	ISO-MPEG-1 A	udio coding,							
MPEG - 2 Audio coding, MPEG - 2 Advanced Audio Coding, MPEG - 4 Audio Coding.										
MPEG	• • • •	Coding, MPEG -	4 Audio Coding.							
MPEG	• • • •	Coding, MPEG -	4 Audio Coding.							
	- 2 Audio coding, MPEG - 2 Advanced Audio C									
	- 2 Audio coding, MPEG - 2 Advanced Audio C Text Books Il Processing of Speech Signals - L.R. Ra									
1. Digita Educa	- 2 Audio coding, MPEG - 2 Advanced Audio C Text Books Il Processing of Speech Signals - L.R. Ra	biner and S. W								
1. Digita Educa 2. Digita	- 2 Audio coding, MPEG - 2 Advanced Audio C Text Books al Processing of Speech Signals - L.R. Ra ation.	biner and S. W dition, Wiley.	7. Schafer. Pearson							
1. Digita Educa 2. Digita	- 2 Audio coding, MPEG - 2 Advanced Audio (Text Books al Processing of Speech Signals - L.R. Ra attion. al Audio Signal Processing – Udo Zolzer, 2nd E	biner and S. W dition, Wiley. son Morgan, 1st l	7. Schafer. Pearson							
 Digita Educa Digita Speec 	- 2 Audio coding, MPEG - 2 Advanced Audio (Text Books al Processing of Speech Signals - L.R. Ra- ation. al Audio Signal Processing – Udo Zolzer, 2nd E h & Audio Signal Processing- Ben Gold & Nels Reference Books	biner and S. W dition, Wiley. son Morgan, 1st l	7. Schafer. Pearson Ed., Wiley							
 Digita Educa Digita Speec 	- 2 Audio coding, MPEG - 2 Advanced Audio (Text Books al Processing of Speech Signals - L.R. Ra attion. al Audio Signal Processing – Udo Zolzer, 2nd E h & Audio Signal Processing- Ben Gold & Nels Reference Books atte Time Speech Signal Processing: Principles at	biner and S. W dition, Wiley. son Morgan, 1st l	7. Schafer. Pearson Ed., Wiley							
 Digita Educa Digita Speec 1. Discret 1sted., P 	- 2 Audio coding, MPEG - 2 Advanced Audio C Text Books al Processing of Speech Signals - L.R. Ra ation. al Audio Signal Processing – Udo Zolzer, 2nd E h & Audio Signal Processing- Ben Gold & Nels Reference Books te Time Speech Signal Processing: Principles at PE.	biner and S. W dition, Wiley. son Morgan, 1st l nd Practice - Tho	7. Schafer. Pearson Ed., Wiley mas F. Quateri,							
 Digita Educa Digita Speec 1. Discret 1sted., P Digita 	- 2 Audio coding, MPEG - 2 Advanced Audio (Text Books al Processing of Speech Signals - L.R. Ra attion. al Audio Signal Processing – Udo Zolzer, 2nd E h & Audio Signal Processing- Ben Gold & Nels Reference Books atte Time Speech Signal Processing: Principles at	biner and S. W dition, Wiley. son Morgan, 1st l nd Practice - Tho d R W Jhaung, 19	7. Schafer. Pearson Ed., Wiley mas F. Quateri, 978, PHI.							

	Strength of CO-PO Mapping													
	РО													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	-	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	-	-	3
CO3	3	3	3	-	3	-	-	-	-	-	-	-	-	3
CO4	3	3	3	-	3	-	-	-	-	-	-	-	-	3
CO5	3	3	3	-	3	-	-	_	-	-	-	-	-	3

		3. Tech. Pattern 2023 06B: VLSI Testing a		
Teachir	ng Scheme:	Credit Scheme:	Examination Sc	cheme:
	:02 hrs/week	02	InSem Exam: 2	0 Marks
·			EndSem Exam:	30 Marks
Prerequ	iisite Courses, if any: Di	gital Electronics		
	nion course, if any: NA	*		
Course	Objectives:			
	introduce the fundament			ses of testing and
	tion in VLSI design, inclu	6		
	provide in-depth knowle			
	es, and algorithms used f			
	enable students to analy			
	hitectures, BIST, and ana	•		-
	develop an understandi	•	•	0
models.	g ATPG, core-based te	sting, verification tec	chniques, and mer	nory-specific fault
	Outcomes: On completion	on of the course stude	nte will be able to	
Course		Course Outcomes	iits will be able to-	Bloom's Level
	Explain the VLSI testin	Dioom S Lever		
CO1	and the importance of	testing in the VLSI des	sign flow.	Understand
CO2	Apply fault simulation algorithms for combination			Apply
	Explain Design-for-Te			Understand
CO3	scan architectures, BIS	• • • 11	•	Onderstand
	Explain system-level to			Understand
CO4	using simulation, form	-	-	Chaoistana
	Explain specialized tes			Understand
CO5	including RAM and R			
	technology-specific fau			
		COURSE CONTEN	TS	
Unit I	Introduction to Testing		(07 hrs)	COs Mapped - CO1
verifica	action to the concepts and ation and testing,VLSI tes t quality, fault modeling,	sting process and test e	quipment, test eco	nomics and
Unit II	Memory Test	(07 hrs)	COs Mapped - CO2	
Faults,	onal RAM Testing with N Testing RAM Technolog Chip Testing , Functional	y and Layout-Related	-	
Unit III	Design for Testability		(08 hrs)	COs Mapped – CO3

0	Design for testability, Scan and Boundary scan architectures, Built-in Self-test (BIST) and current-based testing, analog test bus standard.										
Unit	System-Level Testing and Design	(07 hrs)	COs Mapped –								
IV	Verification Techniques		CO4								
System test and core-based design, ATPG, Embedded core test fundamentals. Design verification techniques based on simulation, analytical and formal approaches. Functional verification. Timing verification. Formal verification. Basics of equivalence checking and model checking. Hardware emulation.											
Unit	VLSI Test Methods and Fault Simulation	(07 hrs)	COs Mapped –								
V	Techniques		CO5								
Test me	thods, logic and fault simulation, modeling circu	its for simulation,	algorithms for true								
value sin	nulation, algorithms for fault simulation, statistic	cal methods for fa	ult simulation,								
testabili	ty measures, combinational circuit test generation	n, sequential circu	uit test generation.								
	Text Books										
1. Bush	nell M L, Agrawal V D, "Essentials of Electron	nic Testing for D	igital, Memory and								
Mixe	d-Signal VLSI Circuits", Kluwer Academic Publ	ishers.									
	Reference Books										
	novici M, Breuer M A and FriedmanA D, "Di Publications.	gital systems and	l Testable Design",								
	ch A L, "Design Test for Digital IC's and Embed	lded Core Systems	s", Prentice Hall								

Crouch A L, "Design Test for Digital IC's and Embedded Core Systems", Prentic
 Kropf T, "Introduction to Formal Hardware Verification," Springer Publications.

Strength of CO-PO Mapping													CO-PSO	
PO													PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	2
CO2	3	3	3	2	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	2	-	-	-	-	-	-	-	-	2	2
CO4	3	3	3	2	-	-	_	_	-	_	_	-	2	2
CO5	3	3	3	3	3	-	_	-	-	-	-	-	3	3

B. E. B. Tech. Pattern 2022 Semester: VII ETC224006C: Climate Change and Green Energy Teaching Scheme: Credit Scheme: Examination Scheme: Theory :02 hrs/week 02 InSem Exam: 20 Marks EndSem Exam: 30 Marks EndSem Exam: 30 Marks Prerequisite Courses, if any: Environmental Studies & Sustainability Course Objectives: 1. To raise awareness among students about the scenario of climate change. 2. Understand the role of international climate negotiations.

- 3. Understand the need for large and immediate cuts in greenhouse gas emissions
- 4. Explain the basic principles of the atmospheric greenhouse effect and the term 'Net Zero'.

Cours	Course Outcomes: On completion of the course, students will be able to –									
	Course Outcomes		Bloom's Level							
CO1	Explain the basic concepts of Climate Change		2-Understand							
CO2	Describe environmental and climate issues and e impact on climate change, adaptation, miti sustainability goals.									
CO3	Elaborate the role of international climate negotiat	ions	2-Understand							
CO4	Describe the Fundamentals of Green Energy		2-Understand							
CO5	Explain the role of renewable energy technologies net-zero emissions.	in achieving	2-Understand							
COURSE CONTENTS										
Unit I	Introduction to Climate Change	(06 hrs)	COs Mapped - CO1							
impact,	uction to climate change, Climate change due to Na Past climatic changes: Snowball Earth, Icehouses a , Green house gases and their GWP(Global Warming	nd Greenhous	ses, Green House							
Unit II	Climate Science and Environmental Issues	(06 hrs)	COs Mapped - CO2							
ozone l	Climate Science, Environmental and Climate Issues: Effects of global warming, acid rain, ozone layer depletion on climate changes. Climate change: vulnerability and adaptation, Mitigation and Adaptation Strategies.									
Unit III	Climate change and International agreements	(06 hrs)	COs Mapped – CO3							

COP 21 Paris Agreement, The United Nations Framework Convention on Climate Change (UNFCCC), The Intergovernmental Panel on climate change (IPCC), The Clean Development Mechanism (CDM), Reduced Emissions from Deforestation and Degradation (REDD). Conservation of natural carbon sinks. National inventory management system in India (NIMS), The Kyoto Protocol, COP (Conference of the parties)

Unit	Green Energy	(06 hrs)	COs Mapped –
IV			CO4

Introduction to Green Energy, World energy usage, Energy reserves - Energy cycle of the earth- Environmental aspects of energy utilization-renewable energy resources, Overview of Renewable Energy Sources: Solar Energy, Geo thermal Energy, Wind and Tidal Energy, Biomass Energy, Hydro electric Energy.

Unit	Green Energy Applications for Net-Zero	(06 hrs)	COs Mapped –
V	Emissions and Carbon Neutrality		CO5

Introduction to Net Zero Emissions and Carbon Neutrality, Green Energy Technologies for Carbon Reduction, Sustainable Practices for Carbon Neutrality, Future of Green Energy and Net Zero, Concept of Carbon market/ Carbon Credit.

Text Books

- 1. "Climate Change: A Very Short Introduction" by Mark Maslin (Oxford University Press, 2014)
- 2. "Climate Change: The Science of Global Warming and Our Energy Future" by EdmondA. Mathez (Oxford University Press, 2011)
- 3. "Climate Change: Law and Policy" by Alexander Zahar and Yannick Radi (Edward Elgar Publishing, 2019)
- 4. **"Renewable Energy: Power for a Sustainable Future"** by **Godfrey Boyle** (Oxford University Press, 2012)
- 5. "Carbon Neutrality: The Ultimate Guide to Achieving Net Zero Carbon Emissions" byMichael C m.Nash(2020)

Reference Books

- 1. "**The Climate Crisis: An Introductory Guide to Climate Change**" by David Archer and Stefan Rahmstorf (Cambridge University Press, 2010).
- 2. "Climate Change: Impacts, Adaptation, and Vulnerability" by Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2014)
- 3. "**The Climate Crisis: An Introductory Guide to Climate Change**" by David Archer and Stefan Rahmstorf (Cambridge University Press, 2010)
- 4. "The Energy Transition: The Global Race to Net Zero" by Michael Bradshaw(2022)
- 5. "Paleoclimatology: From Snowball Earth to the Anthropocene" by Colin P. Summerhayes (2020)

	Strength of CO-PO Mapping													CO-PSO Mapping	
	PO													PSO	
	1	1 2 3 4 5 6 7 8 9 10 11 12								PSO1	PSO2				
CO1	2	-	-	-	-	3	-	-	-	-	3	-	-	-	
CO2	2	-	-	-	-	3	-	-	-	-	3	-	-	-	
CO3	2	-	-	-	-	3	3	-	3	-	-	-	-	-	
CO4	3	-	-	-	-	3	-	-	-	-	3	-	-	-	
CO5	2	-	-	-	-	3	-	-	-	-	3	-	-	-	

B. E	. B. Tech. Pattern 2022 S	emester: VII									
ETC224006D: Drives and Control											
Teaching Scheme:	Credit Scheme:	Examination Scheme:									
Theory :02hrs/week	02	InSem Exam: 20 Marks									
		EndSem Exam: 30 Marks									
Prerequisite Courses, if a	ny:										
Course Objectives:											
1. Understand the basics,	types, and selection factors	of electric drives.									
2. Learn motor characteris	tics and braking methods.										
3. Study starting technique	es and control circuits for me	otors.									
4. Explore conventional ar	nd solid-state speed control	of DC drives.									
1	ol techniques for AC drives										
L	*	* *									

Course Ou	tcomes: On completion of the course, students	will be able	to-						
	Course Outcomes		Bloom's Level						
CO1	Identify basic elements, types, and selection electric drives.	criteria for	1-Remember, 2- Understand						
CO2	Analyze speed-torque characteristics and t various motors.	oraking of	4-Analyze						
CO3	Elaborate starting methods and control circuits and AC motors.	for DC	2-Understand						
CO4	Apply speed control methods for DC mo conventional and solid-state techniques.	3-Apply							
CO5	Implement AC motor speed control using volta V/f control, and solid-state devices.	ige control,	3-Apply, 4-Analyze						
	COURSE CONTENTS								
Unit I	Introduction to Electrical Drives	(06hrs)	COs Mapped - CO1						
Basic elements, types of electric drives, factors influencing electric drives, heating and cooling curves loading conditions and classes of duty, Selection of power rating for drive motors with regard to thermal overloading and load variation factors									
Unit II	Drive motor characteristics	(06hrs)	COs Mapped - CO2						
Mechanica	l characteristics, speed- torque characteristics of	various typ	es of load and drive						

Mechanical characteristics, speed- torque characteristics of various types of load and drive motors, braking of electrical motors, dc motors: shunt, series, compound motors, single phase and three phase induction motors.

Unit III	Starting methods	(06hrs)	COs Mapped –CO3
i i i i i i i i i i i i i i i i i i i			

Types of dc motor starters, typical control circuits for shunt and series motors, three phase squirrel and slip ring induction motors

Unit IV	Conventional and solid state speed control of D.C Drives	(06hrs)	COs M	apped –CO4
-	trol of DC series and shunt motors, Armature an stem using controlled rectifiers and DC choppers			
Unit V	Conventional and solid state speed control of AC drives	(06hrs)	COs M	apped –CO5
	trol of three phase induction motor, Voltage con recovery scheme using inverters and AC voltag motor.			
	Text Books			
McGraw-l	EDAM SUBRAMANIAM "Electric drives (co Hill.2001 AGARATH.I.J & KOTHARI .D.P,"Electrical ma			
	Reference Books			
2. M. Hill.1998	LLAI.S.K "A first course on Electric drives", Wi D. SINGH, K.B.KHANCHANDANI,"Power Partab,"Art and science and utilization of electric	r electronio	cs," Ta	ta McGraw-
	Strength of CO-PO Mapping			CO-PSO
				22 230

	Strength of CO-PO Mapping													CO-PSO	
														ping	
PSO												PS	PSO		
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2		
CO1	3	2		-	-	-	-	-	-	-	-	-	2	2	
CO2	3	3		2	-	-	-	-	-	-	-	-	3	2	
CO3	2	2	-	-	-	-	-	-	-	-	-	-	2	2	
CO4	3	3	3	-	-	-	-	-	-	-	-	-	3	3	
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	3	

	Final Yea	r of B. Tech. E&TC I	Pattern 2022					
	ETC22	24007: Research Met	hodology					
Teaching Scheme:Credit Scheme:Examination Scheme:								
Theory :	03hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks					
-	isite Courses, if any: mentals of Statistics or Ap	oplied Statistics. 2. Intr	oduction to Resea	urch or Academic				
Compan 1. Data A 2. Acadei	ion course, if any: analysis and Interpretation mic Writing and Publicati							
 Unde Class Expl Lear Reco 	Objectives: erstand the fundamental cosify various types of reseat ore sampling techniques at n the structure and compo- ognize ethical issues and go Dutcomes: On completion	arch and research design and methods of data co ponents of research reports and practices in research	ns. Ilection and analy rts and academic rch activities.	writing.				
	rse Outcomes: On completion of the course, students will be able to– Course Outcomes Bloom's Leve							
CO1	Define and explain key concepts, types, and processes of research.1- Reme 2- Unde							
CO2	different research pro	Identify and categorize appropriate research designs for different research problems.3- Apply						
CO3	effectively.	Analyze collected data using statistical tools and present it4-Analyzeeffectively.						
CO4	articles.							
CO5Evaluate ethical practices in research and avoid plagiarism.5- Evaluate								
COURSE CONTENTS								
Unit I	Introduction	to Research	(07hrs)	COs Mapped CO1				
Meaning Research	ncept of research, characters g and sources of Research n process, outcomes, appli sis, Importance of Review	problem, characteristicities in the second sec	cs of good Resear eaning and types	ch problem, of Research				
Unit II	Types of Research and Research Design(07hrs)COs M- CO2							
qualitati	of Research: Types of rese ve and quantitative. Resea tory, Descriptive, Casual r	urch Design: Meaning,	need, types of res	search design –				

Unit III	Sampling, Data Collection and analysis	(08hrs)	COs Mapped - CO3
of samp sample, samplin charts – properti	and sources of data – Primary and secondary, Me ling and sampling methods – sampling frame, sar simple random sampling, purposive sampling, co g, classification and tabulation of data, graphical Histograms, frequency polygon and frequency cu es. Statistical Methods for Data Analysis : Applic es of central tendency and dispersion	nple, characteris onvenience samp representation of urves, bell shape	tics of good ling, snowball f data, graphs and d curve and its
Unit IV	Research Report	(07hrs)	COs Mapped - CO4
Kesear	ch report: Research report and its structure, journ	ai articles – Con	inonents of
journal	article. Explanation of various components. Struc and dissertations. Components of thesis and disser	ture of an abstra	ct and keywords.
journal Thesis a	article. Explanation of various components. Struc and dissertations. Components of thesis and disser	ture of an abstra	ct and keywords.
journal Thesis a bibliogr Unit V Plagian	article. Explanation of various components. Struc and dissertations. Components of thesis and disser aphy.	ture of an abstra- tations. Referen- (07hrs) ences, unintent	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism
journal Thesis a bibliogr Unit V Plagian	article. Explanation of various components. Struct and dissertations. Components of thesis and dissert aphy. Ethics in Research rism - Definition, different forms, consequ	ture of an abstra- tations. Referen- (07hrs) ences, unintent	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism
journal Thesis a bibliogr Unit V Plagian copyrigi 1. Bust	article. Explanation of various components. Struct and dissertations. Components of thesis and dissert aphy. Ethics in Research rism - Definition, different forms, consequent th infringement, collaborative work. Qualities of p	ture of an abstra- tations. Reference (07hrs) ences, unintent good Researcher	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism.
journal Thesis a bibliogr Unit V Plagian copyrig 1. Bus Schi 2. Rese	article. Explanation of various components. Struct and dissertations. Components of thesis and dissert aphy. Ethics in Research rism - Definition, different forms, consequent th infringement, collaborative work. Qualities of a Text Books iness Research Methods, 9th edition, Tata McGra indler (2009) earch Methodology by Kothari C. R	ture of an abstra- tations. Reference (07hrs) ences, unintent good Researcher	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism Id Cooper and PS
journal Thesis a bibliogr Unit V Plagian copyrig 1. Bus Schi 2. Rese	article. Explanation of various components. Struct and dissertations. Components of thesis and disser- aphy. Ethics in Research fism - Definition, different forms, consequent th infringement, collaborative work. Qualities of a Text Books iness Research Methods, 9th edition, Tata McGra indler (2009) earch Methodology by Kothari C. R earch Methods for Business, 4th edition, Wiley by	ture of an abstra- tations. Reference (07hrs) ences, unintent good Researcher	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism Id Cooper and PS
journal Thesis a bibliogr Unit V Plagian copyrig 1. Bus Schi 2. Rese 3. Rese	article. Explanation of various components. Struct and dissertations. Components of thesis and dissert aphy. Ethics in Research frism - Definition, different forms, consequent th infringement, collaborative work. Qualities of a Text Books iness Research Methods, 9th edition, Tata McGra indler (2009) earch Methodology by Kothari C. R earch Methods for Business, 4th edition, Wiley by Reference Books	ture of an abstra- tations. Reference (07hrs) ences, unintent good Researcher w Hill, by Dona	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism Ild Cooper and PS 2010)
journal Thesis a bibliogr Unit V Plagiar copyrig 1. Bus Schi 2. Rese 3. Rese 1. Rese	article. Explanation of various components. Struct and dissertations. Components of thesis and disser- aphy. Ethics in Research rism - Definition, different forms, consequent th infringement, collaborative work. Qualities of a Text Books iness Research Methods, 9th edition, Tata McGra indler (2009) earch Methodology by Kothari C. R earch Methodology by Kothari C. R earch Methodology, 2nd edition, Pearson Educati keting Research, 5th edition, Pearson Prentice Ha	ture of an abstra- tations. Reference (07hrs) ences, unintent good Researcher w Hill, by Dona y Uma Sekaran (on by Ranjit Kur	ct and keywords. cing styles and COs Mapped - CO5 ional plagiarism dld Cooper and PS 2010) mar (2009)

	Strength of CO-PO Mapping PSO								CO-PSO Mapping PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	2	-	-	-	-	-	2	-	-	-	-
CO2	3	3	2	2	2	-	-	-	-	-	-	-	-	-
CO3	3	2	3	3	2	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	3	3	-	2	-	-
CO5	2	2	-	-	-	2	3	3	-	3	-	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
No.							
1	Assignment:	10					
	Assignment No. 1 - Unit 1 (10 Marks)						
	Assignment No. 2 - Unit 2 (10 Marks)						
	Assignment No. 3 – Unit 3 (10 Marks)						
	Assignment No. 4 - Unit 4 (10 Marks)						
	Assignment No. 5 - Unit 5 (10 Marks)						
2	Quiz (Using LMS):	10					
	Unit No. 1 (10 Questions - 10 Marks)						
	Unit No. 2 (10 Questions - 10 Marks)						
	Unit No. 3 (10 Questions - 10 Marks)						
	Unit No. 4 (10 Questions - 10 Marks)						
	Unit No. 5 (10 Questions - 10 Marks)						

	Final Year B	B. Tech. Pattern 2022	Semester: VI			
	ETC224008	8: Innovation & Entro	epreneurship			
Teachin	g Scheme:	Credit Scheme:	Examination Second	cheme:		
Theory	:02hrs/week	02	Continuous Comprehensive Evaluation: 50 Marks			
-	isite Courses, if any: Ind [.] , Project Stage – I, II	ustrial & Project Ma	nagement, Mini	Project &		
	Objectives:					
	now innovation and entre					
	inderstand design thinking	0 1				
	now legal framework need	-	start-up.			
	now how to prepare busin Outcomes: On completion		a will be able to			
Course	-	ourse Outcomes	s will be able to-			
			Bloom's Level			
CO1	Explain Innovation, Entre entrepreneur.			2-Understand		
CO2	Explain design thinking c	concept & idea generati	on process	2-Understand		
CO3	Explain legal framework	needed for registration	of start-up.	2-Understand		
CO4	Prepare a business plan &	z develop business stra	tegy	3-Apply		
		COURSE CONTENT	S	-		
Unit I	Introduction to Innova Entrepreneurship	tion and	(06hrs)	COs Mapped CO1		
fundame	f innovation and entrepren entals, Leadership & team eneurship.	-	_			
Unit II	Design Thinking & Id	ea Generation	(08hrs)	COs Mapped – CO2		
observa The see	ction to Design Thinking, tion and immersion, Visua ed of innovation, Innovat Types of innovations and	lizing ideas, Communition domains, Innovati	cating ideas.			
Unit III	Creating a Startup		(05hrs)	COs Mapped – CO3		
Types o	f companies, legal process	ses for registering com	panies, registering	g as startup		
Unit IV	Becoming an Entrepro	eneur	(05hrs)	COs Mapped – CO4		

Creating a business plan, Preparing a Pitching presentation, Building business strategy

Text Books

- Badhai, B, "Entrepreneurship for Engineers", Dhanpat Rai & Co. (p) Ltd.
 "The Field Guide to Human-Centered Design", by IDEO.org

Reference Books

1. Eric Ries, "The Lean Startup", Penguin Books Limited (E-Book).

E-MATERIAL

Sr.	Title
No	
1	NPTEL Course on "Entrepreneurship" by Prof. C. Bhaktvatsala Rao, IIT Madras
1	Link of the Course: https://onlinecourses.nptel.ac.in/noc21_mg70/preview
	NPTEL Course on "Design Thinking-A Primer" by Prof. A. Mahalingam, Prof. B.
2	Ramadurai IIT Madras
	Link of the Course: https://onlinecourses.nptel.ac.in/noc22_mg32/preview
	NPTEL Course on "Patent Law for Scientists and Engineers" by Prof. Feroz Ali
3	IIT Madras
	Link of the Course: https://onlinecourses.nptel.ac.in/noc20_hs55/preview_
	NPTEL Course on "Innovation, Business Models and Entrepreneurship" by Prof.
4	Rajat Agarwal, Prof. Vinay Sharma IIT Roorkee
	Link of the Course: https://nptel.ac.in/courses/110107094

	Strength of CO-PO Mapping													
	PO													
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	-	-	-	-	3	3	3	3	3	3	3		
CO2	3	-	-	-	-	3	3	3	3	3	3	3		
CO3	3	-	-	-	-	3	3	3	3	3	3	3		
CO4	3	-	-	-	-	3	3	3	3	3	3	3		

	Guidelines for Continuous Comprehensive Evaluation of Theory Course											
Sr. No.												
1	Assignments	30										
2	Seminar	20										

Expt. No.	Title of Experiment
1	To design a strategy by writing steps to market the project you are building.
2	To generate an idea having novelty.
3	To prepare a business plan.
4	To create a pitching deck.
5	To prepare a business strategy.

Final Year B. Tech Syllabus 2022 Course

Project Phase 2

Project Phase 1 (2302320)-Credits: 01 Teaching Scheme: Practical 2 Hrs/week Examination Scheme: TW: 50Marks Project Phase 2(ETC224009): Credits: 04 Teaching Scheme: Practical 8 Hrs/week Examination Scheme: OR: 50Marks, TW: 100 Marks

Prerequisites for the course: Based on knowledge of all subjects

Ιοο	rning objective for CO1
	dents will be able to:
1	Identify specification of the problem.
2	Structure the problem.
2	1
_	Identify the appropriate methodology to solve the problem.
4	Define the methodology to solve the problem.
	rning objective for CO2
	lents will be able to:
1	Adapt the vital skills of compromise and collaboration.
2	Construct, analyzes and approach problem solution as a team
3	Fully understand the role of each individual in a group to accomplish the goal.
4	Develop leadership skills by aligning with the objective of the project and lead the team
	towards its goal.
	rning objective for CO3
Stuc	dents will be able to
1	Plan, co-ordinate and control the complex and diverse activities in project
2	Predict any problems and find solution for it
3	Plan the progress to result in total completion of the project.
Lea	rning objective for CO4
Stuc	dents will be able to
1	Design appropriately using a modular construction approach to solve the problem as per
1	specifications.
2	Implement the selected methodology to solve the problem.
3	Select the correct hardware according to specifications.
4	Select the correct software for simulation and programming.
5	Validate the result and draw conclusion.
Lea	rning objective for CO5
Stuc	dents will be able to
1	Present the work done by proper documentation
2	Present paper in national / international conferences, project exhibitions & competitions
Lea	rning objective for CO6
Stuc	dents will

1	Develop professional practice.
2	Recognize how to do the project to its best.
3	Develop ethical Practices.

Course Outcome	After successful completion of course students will be able to
CO1	Define, analyze and solve complex real life problem.
CO2	Work in collaborative team as a member or leader.
CO3	Apply project management techniques.
CO4	Identify and apply appropriate tools.
CO5	Communicate effectively in verbal and written form.
CO6	Imbibe ethical practices.

Course context, Relevance, Practical Significance:

Course Content: (Syllabus)

1. **Group Size** The student will carry the project work individually or by a group of students. Optimum group size is in 3 students. However, if project complexity demands a maximum group size of 4 students, the committee should be convinced about such complexity and scope of the work.

2. Selection and approval of topic:

• Topic should be related to real life application in the field of Electronics and Telecommunication OR Investigation of the latest development in a specific field of Electronics or Communication or Signal Processing OR The investigation of practical problem in manufacture and / or testing of electronics or communication equipment OR The Microprocessor / Microcontroller based applications project ispreferable. OR Software development project related to VHDL, Communication, Instrumentation, Signal Processing and Agriculture Engineering with the justification for techniques used / implemented is accepted. OR Interdisciplinary projects should be encouraged.

• Each project group interacts and discusses their project idea with Head of Department, Academic coordinator and Project Coordinator. (Project Monitoring committee)

• Students are asked to submit the synopsis on more than one topic according to their area of interest to project coordinator

• Students give presentation to Project Monitoring committee on Topics they have submitted the synopsis.

• These synopses are discussed among the committee of project guides (Project Committee)

- After the presentation committee members select one project topic for each group
- Project guides are allocated according to area of project
- There is also an external guide from industry for industry sponsored projects
- The scope of project is finalized after discussion with the guide
- Each group presents "project introductory seminar" to project guide and Project Monitoring committee members.
- 3. The examination is conducted by two examiners (internal and external) appointed by the university. The examiners appointed must have minimum 5 years of experience with UG qualification or 2 years with PG qualification.
- 4. The assessment is based on Innovative Idea, Depth of understanding, Applications, Individual contributions, presentation, and the grade given by the internal guide based on the work carried out in a semester.
- 5. A log book/Project book of Work carried out during the semester will be maintained with monthly review remarks by the guide and HoD. It should have entries related to the work done, problems faced, solution evolved etc., duly signed by internal and external guides.
- 6. Project report must be submitted in the prescribed format only
- 7. Project Seminarassessment is based on the project topic. It consists of Literature Survey and basic project work during 7th semester
- 8. The report consists of the Literature Survey, basic project work and the size of the report should be maximum of 30pages.
- 9. Project Work assessment is based Hardware and /or software designed and prototyping of the problem statement
- 10. The report consists of the Literature Survey, basic project work, Hardware and software design , Testing and conclusion and the size of the report should be maximum of 50pages during 8th semester
- 11. A certified copy of both the reports is required to be presented to external examiner at the time of final examination.

Relevance of the projects and their contribution towards attainments of POs and PSOs:

- Projects done by final year students are classified into application (for societal, educational, interdisciplinary), product and research type
- Modern tools and technology are used by the students for implementation of their projects
- Each project is evaluated according to rubrics designed
- Each project topic has contribution towards attainment of most of the POs and PSOs

Strength of CO-PO/PSO Mapping (Sample): Attainment of a PO/PSO depends both on the attainment levels of associated COs of courses and the strengths to which it is mapped

• Each Course Outcome addresses a sub-set of POs and PSOs to varying levels (strengths: 1- Low, 2 – Medium, 3 - Strong).

	Stre	Strength of CO-PO/PSO Mapping													
	PO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	-	*	*	-	-	-	-	-	*	*	
CO2	-	-	-	-	-	-	-	-	3	-	-	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	-	3	-	-	-	
CO4	3	3	-	3	3	-	-	-	-	-	-	3	-	-	
CO5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	
CO6	-	-	-	-	-	-	-	3	-	-	-	-	-	-	

Semester VIII

		Final Y	ear B. Tech. Pattern 2022 So ETC224011: Network Secu				
Teach	ing Sch	ieme:	Credit Scheme:	Examinat	ion Scheme:		
Theor	y :03 h	rs/week	03	Continuou	m Exam:60 Marks uous Comprehensive		
Preree Course	-		any: Computer networks	Evaluation	: 40 Marks		
	Ŭ		posure to the field of network se	ecurity to the st	tudents.		
Cours	e Outco	omes: On co	ompletion of the course, student	s will be able t	0—		
			Course Outcomes		Bloom's Level		
CO1		plain the fun es of Attacks	different	2-Understand			
CO2	Exp	plain the Prin		2-Understand			
CO3		borate the communication.	ecure	2-Understand			
CO4	-	plain Wirele hanisms.	ss Network Security and Defens	sive	2-Understand		
CO5	-		ty in Emerging and Advanced C Cloud and IoT.	computing	2-Understand		
			COURSE CONTENTS				
Uni	t I	Basics of and crypt	Communication Networks ography	(06 hrs)	COs Mapped - CO1		
			munication Networks, Different for Cryptography	Types of Atta	cks on Networks,		
Uni	t II	(06 hrs)	COs Mapped - CO2				
			y: Symmetric Key Cryptograph tegrity, Cryptographic Hash Fun				
Unit I	II	Authentic Communi	ation and Secure cation	COs Mapped – CO3			
Cryptog Unit I	graphy, II	Message Int Authentic Communi	egrity, Cryptographic Hash Fun ation and Secure	(07 hrs)	gital Signat COs M – CO3		

Network-Laye	r Security and Virtual Private Networks								
Unit IV	Unit IVWirelessNetworkSecurityand(06 hrs)Defensive Mechanisms								
•	Vireless Local Area Networks, Wireless Cellu Detection Systems, Cryptocurrencies and Blo		Security, Firewalls						
Unit V	nit V Cloud, IoT, and Post-Quantum Security Mechanisms (06 hrs) COs I – CO5								
	y, Security of the Internet of Things (IoT), Hand Onion Routing, Post-Quantum Cryptograp		ity, Anonymous						
	Text Books								
	R. Perlman, M. Speciner, R. Perlner, "Netwo tion in a Public World", Pearson Education, 3	•							
-	, "Cryptography and Network Security:Princ: th edition, 2023	iples and Pract	tice", Pearson						
3. J. Kurose, K Pearson Edu	. Ross, "Computer Networking: A Top Down cation, 2022	n Approach", 8	8th Edition,						
	Reference Books								
1. B.L. Meneze Learning India	s, R. Kumar, "Cryptography, Network Secur Pvt. Ltd.,2018	ity, and Cyber	Laws", Cengage						
2. J. Edney, W. Pearson Educat	A. Arbaugh, "Real 802.11 Security: Wi-Fi Pi ion, 2004	rotected Acces	as and 802.11i",						
3. W. Stallings, Education, 8th e	"Cryptography and Network Security:Princi edition, 2023	ples and Pract	ice", Pearson						
3. L. Peterson, I Kaufmann, 202	B. Davie, "Computer Networks: A Systems A 1	Approach", 6th	e Edition, Morgan						

	Strength of CO-PO Mapping													CO-PSO Mapping	
	РО													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
CO2	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
CO3	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
CO4	3	3	-	-	-	-	-	-	-	-	-	3	-	-	
CO5	3	3	-	-	-	-	-	-	-	-	-	3	-	-	

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	Final Year. B. Tech. Pattern 2022 Semester: VIII ETC: Biomedical Signal Processing (Elective - VI)					
Teach	aching Scheme: Credit Scheme: Examination Scheme:					
Theor	y :03 hrs/week	03	EndSem Exam:60 Marks Continuous Comprehensive Evaluation: 40 Marks			
Prere	quisite Courses, if	any: Digital Signal Pro	cessing			
Comp	anion course, if ar	y:				
EE 2. tim 3. me 4. mo	 Course Objectives: The course aims to introduce the origin and nature of biomedical signals like ECG, EEG, and EMG. It covers techniques for artifact removal, event detection, and waveform analysis in time and frequency domains. Students will learn to extract meaningful features and apply system modeling methods such as AR and ARMA. The course emphasizes practical skills through case studies and tutorials using modern signal processing tools. Course Outcomes: On completion of the course, students will be able to– 					
		Course Outcom	ies	Bloom's Level		
CO1	Explain the funda preprocessing tech	e	omedical signals, and basic	2		
CO2	Apply advanced filtering techniques for artifact removal in					
CO3	Analyze significant events in biomedical signals 4					
CO4	Extract meaningful features from biomedical signals in time and frequency domains 4					
CO5	Model biomedical	systems and design sig	nal processing algorithms	2		

	COURSE CONTENTS					
Unit I	Introduction to Biomedical Signals and Preprocessing(08 hrs)COs Mapped CO1					
dynami domain Moving	ninaries Biomedical signal origin & dynamics (EC) cs (EEG, EMG, etc.)Filtering for removal of artefa filtering: Synchronized Averaging, Moving Avera g Average Filter to Integration, Derivative-based op g: Notch Filter, Optimal Filtering: The Weiner Filter	acts Statistical j age Time doma perator, Freque	preliminaries Time in filtering:			
Unit II	hit Advanced Filtering Techniques (08 hrs) COs Mapped - CO1					

Filtering for Removal of Artefacts, Optimal Filtering: The Weiner Filter, Adaptive Filtering

Selecting Appropriate Filter

Selecting Appropriate Filter						
Unit III	Event Detection and Waveform Analysis	(08 hrs)	COs Mapped – CO2			
Event Detection:						
Exam	ple events (P, QRS and T wave in ECG), Derivation	ve based Appr	oaches for QRS			
	on, Pan Tompkins Algorithm for QRS Detection,					
	tion Analysis of EEG Signal, Waveform Analysis:					
-	is of ECG,Correlation coefficient, The Minimum	L L				
Unit	Signal Feature Extraction and	(08 hrs)	COs Mapped			
IV	Frequency Domain Analysis		- CO2			
	eature extraction: Signal length, Envelop Extra					
	velogram, Analysis of activity, Root Mean Square	e value, Zero-c	rossing rate, Turns			
Count, I	Form factor					
Frequer	cy-domain Analysis: Period gram					
Average	ed Periodogram,Blackman-Tukey Spectral Estimat	or,Daniell's Sp	ectral Estimator,			
-	es derived from PSD	1				
Unit	Modeling of Biomedical Systems	(08 hrs)	COs Mapped			
V	into doming of Diomodical Systems	(00 113)	- CO3			
Mode	ing of Biomedical Systems:					
Motor	unit firing pattern, Cardiac rhythm					
	ints and pitch of speech, Point process					
	etric. System modelling, Autoregressive model					
	orrelation method, Application to random signals,	Computation o	f model			
-	ters,Levinson-Durbin algorithm					
-	utation of gain factor, Covariance method, Spectra	l matching and	parameterization,			
	order selection					
	on between AR and Cepstral coefficients.					
	lling of Biomedical Systems A model					
	ntial estimation of poles and zeros					
Tutori	1					
	al 1: Notch filter design					
	al 1: Synchronized averaging					
	Tutorial 1: Design Butterworth low pass filter					
	Text Books					
1. "Biomedical Signal Processing and Signal Modeling", Author: Eugene N. Bruce, Publisher: Wiley-Interscience						
2. R. Rangayan, "Biomedical Signal Analysis", Wiley						
	3."Biomedical Signal Processing: Principles and Techniques", Authors: D.C. Reddy, Publisher: McGraw-Hill					
	Reference Books					

Reference Books

1''**Signals and Systems for Bioengineers'',Author:** John Semmlow,**Publisher:** Academic Press

2. "Biosignal and Medical Image Processing", Author: John L. Semmlow, Publisher: CRC Press

3."**Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques**",**Editors:** Varun Bajaj, G. R. Sinha, C. H. Liu,**ublisher:** Academic Press

	Strength of CO-PO Mapping										CO- Map			
						Р	0						PS	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	2	-	-	-	1	1	-	2	2	3
CO2	3	3	2	3	3	-	-	-	1	1	-	2	2	3
CO3	3	3	2	3	3	-	-	-	2	1	1	2	2	3
CO4	3	3	3	3	3	-	-	-	2	2	1	3	2	3
CO5	3	3	3	3	3	1	-	1	2	2	2	3	3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10				
2	Performance in Unit Tests (5 tests, one on each unit)	10				
	Total	20				

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	Final Year B	B. Tech. Pattern 20	22 Semester: VIII				
ETC224012: Mixed Signal Design							
Teaching	ng Scheme: Credit Examination Scheme: Scheme:						
Theory •(3 hrs/week	03	EndSem Exam:6	0 Marks			
incory .	5 III 5/ WCCK	05	Continuous Com				
			Evaluation: 40 M				
Prerequis	site Courses, if any: Ana	alog VI SI Circuit De	sion Digital VI SI Ci	ircuit Design			
	on course, if any: -						
Course O	bjectives: ww mixed signal circuits lik		te				
	n knowledge on filter desig						
-	uire knowledge on design			de.			
~~~							
Course O	utcomes: On completion	-					
		Course Outcome	S	Bloom's Level			
C01	Explain sampling cirarchitectures.	rcuits, switches, and	l sample-and-hold	2			
CO2	Explain integrator ty filter behavior.	pes, digital filters,	and switched-capac	itor 2			
CO3	Explain DAC charac	cteristics, performation of DAC.	nce metrics, and des	ign 3			
CO4	Explain ADC principl converter architectures		Design various	3			
CO5	Design comparators, synthesis.	multipliers, and PLL	DLL-based frequency	^y 3			
		COURSE CONT	ENTS	·			
Unit I	Sampling Circuits		(06 hrs)	COs Mapped CO1			
Fundam	entals of analog signal s	ampling and aliasin	g, different types of				
switches.	Performance metrics, Sa	ample-and-Hold Ar	chitectures- Open-le	oop & closed-loop			
	ires, open-loop architect	-	acitance, multiplexe	ed-input			
	ires, recycling architectu						
Unit II	Analog and Digital Filters(07 hrs)COs Mapped- CO1						
Bandpass	or building blocks: actives and highpass sinc filters in switched-capacitor fil	s Switched-capacito					
Unit III	D/A Converter Archite	D/A Converter Architectures(08 hrs)COs Mapped- CO2					
Ideal DA	AC characteristics: resolu	ution, linearity, mor	notonicity, DAC per	rformance metrics:			

INL, DNL, settling time, glitch, D/A converter in terms of voltage, current, and charge division or multiplication, switching functions to generate an analog output corresponding to a digital input. Resistor-Ladder architectures, Current steering architectures.

Unit	A/D Converter Architectures	(08 hrs)	COs Mapped				
IV			- CO2				
Ideal /	Ideal ADC characteristics, quantization error and resolution. ADC performance matrices						

Ideal ADC characteristics, quantization error and resolution, ADC performance metrics: SNR, ENOB, INL, DNL, SFDR, Flash and SAR ADC architectures, Pipelined ADC, Oversampling converters

Unit	Mixed-Signal Blocks – Comparators,	(07 hrs)	COs Mapped
V	PLLs, and Frequency Synthesizers		- CO3

Characterization of a comparator, basic CMOS comparator design, analog multiplier design, simple PLL, charge-pump PLL, Design of PLL's and DLL's and frequency synthesizers.

#### **Text Books**

- 1. Baker Jacob R, "CMOS Mixed signal Circuit Design," Wiley IEEE Press
- 2. Baker Jacob R., "CMOS circuit design layout and simulation" Wiley IEEE
- 3. Razavi, B., "Design of Analog CMOS Integrated Circuits", 1 st Ed., Mc Graw Hill.

#### **Reference Books**

- 1. R. Gregorian, Gabor. C. Temes, "Analog MOS ICs for Signal Processing ", John Wiley & Sons.
- 2. Baker, Li, Boyce, "CMOS Circuits Design, Layout and Simulation", TMH.
- 3. Allen Halburg, "Analog Integrated Circuits", Oxford
- 4. David A. Johns, Ken Martin, John , "Analog Integrated Circuit Design" Wiley & Sons.
- 5. B.Razavi Monolithic Phase-locked loops and clock recovery circuits: Theory and design.

	Strength of CO-PO Mapping										PSO ping			
	РО									PS				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1	1	1	-	-	-	-	-	-	-	1	2
CO2	3	3	2	1	2	-	-	-	-	-	-	-	1	2
CO3	3	2	1	2	2	-	-	-	-	-	-	-	2	2
CO4	3	3	1	2	2	-	-	-	-	-	-	-	2	2
CO5	3	3	2	2	2	-	-	-	-	-	-	-	1	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignment:	10				
	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5					
2	Quiz (Using Learnico):	10				
	Unit No. 1 (10 Questions - 10 Marks)					
	Unit No. 2 (10 Questions - 10 Marks)					
	Unit No. 3 (10 Questions - 10 Marks)					

Unit No. 4 (10 Questions - 10 Marks)	
Unit No. 5 (10 Questions - 10 Marks)	



T. Y. B. Tech. Pattern 2022 Semester: VIII ETC224012C: Advanced Mobile Communication (Elective VI)						
Teaching Scheme: Credit Scheme: Examination Scheme:						
Theory :03 hrs/week	03	EndSem Exam:60 Marks				
		Continuous Comprehensive				
		Evaluation: 40 Marks				
Prerequisite Courses, if an	y: Fundamentals of Option	cal Communication, Cellular				
Networks, Digital Communications.						
Companion course, if any:						
Course Objectives:						

- 1. Understand Optical Wireless Communication Fundamentals
- 2. Analyze System Design and Performance in Optical Wireless Networks
- 3. Explore Emerging Technologies and Applications in Optical Wireless Communication

Course Outcomes: On completion of the course, students will be able to-						
	Course Outcomes					
CO1	Understand the Fundamentals of Optical Wireless Communication (OWC)					
CO2	Analyze Optical Channel Modeling and Multiple-Source Systems	3				
CO3	Compare Indoor and Outdoor Optical Wireless Communication Systems	2				
CO4	Investigate Modulation and Signal Processing Techniques in OWC and UWOC	3				
CO5	Explore Advanced Optical Wireless Technologies and Applications	3				

	COURSE CONTENTS								
Unit	Fundamentals of Optical Wireless (06 COs Mapp								
Ι	Communication	hrs)	CO1						
Signal Intensit	Introduction to optical wireless channel (OWC) and modeling, Optical channel modeling, Signal propagation, RMS delay spread, Optical wireless channel (OWC) characteristics, Intensity modulation direct detection, Lambertian radiation, Channel model for single- source case, Channel impulse response								
Unit II	Optical Wireless Channel Modeling and MIMO Techniques	(07 hrs)	COs Mapped – CO1						
	WIIWIO Techniques		-001						
Channe diagrar	Channel model for multiple sources, Steps in site-specific channel model approach, Channel model example, MIMO and angle diversity receiver, Optical MIMO system diagram, Imaging diversity optical MIMO, Indoor channel limitations, Outdoor optical wireless channel, Comparison of FSO and RF communication systems, Atmospheric								

Unit III	Free-Space Optics and Underwater Optical Wireless Communication	(08 hrs)	COs Mapped – CO2
optics, 1 turbuler turbuler spatial	equation for FSO links, Near and far field of light emi Beam divergence loss, use of beam expander, link des nce, statistical models for received signal irradiance, E nce on Gaussian beam, Techniques for turbulence mit diversity, adaptive optics, coding, Hybrid RF/FSO, Un nication (UWOC)	ign example, Effect of atmos igation: apertu	atmospheric spheric ire averaging,
-	beam propagation in underwater environments, under e transfer equation, underwater turbulence model	rwater channe	l modeling,
Unit IV	Modulation and Signal Processing for Optical Wireless CommunicationinUWOC channel, classification of UWOC line	(08 hrs)	COs Mapped - CO2
	Shift Keying (CSK) modulation, CSK system block model, probability of error and SER, High-order CSI Advanced Multiple Access Techniques and Applications	0	COs Mapped
techniq NOMA exampl NOMA exampl hybrid	thogonal multiple access (NOMA) for 5G and IoT, Clues, comparison of NOMA with OMA, Two-user , NOMA in VLC: block diagram, VLC channel mode e, MIMO receiver design: ZF receiver, MMSE receive : uplink/downlink, cooperative NOMA (C-NOMA), es of DCO-OFDM-based MIMO PD-NOMA VLC synetworks, design considerations, V2V and V2X con- cture, safety services, VLC-based V2V model	NOMA netw el, indoor NOM er, SNR perfo Cluster-based ystem, LiFi W	ork, issues with MA-VLC systen rmance, MIMO MIMO-NOMA /iFi coexistence
	Text Books		
	Kizheng Ke, Ke Dong, Optical Wireless Commun : 978-9811903847.	ication, Sprin	ger, July 2023
Arog	zio Biglieri, Robert Calderbank, Anthony Consta yaswami Paulraj, and H. Vincent Poor, MIMO pridge University Press, 2007, ISBN: 9780511618420	Wireless C	
	Yuanwei Liu, Zhijin Qin, Zhiguo Ding, Non-Orthive Connectivity, Springer, 2019, ISBN: 978-3030309	•	iple Access fo
	Reference Books		

ISBN: 9780367199804

2. S. M. Riazul Islam, Nurul Huda Mahmood, Ekram Hossain, Non-Orthogonal Multiple Access for 5G and Beyond, Springer, 2021, ISBN: 9783030554880

#### Additional resources for study

- 1. IEEE Papers on 6G, IoT and VLC communications
- 2. NPTEL course: Optical Wireless Communications for Beyond 5G Networks and IoT, IIIT Delhi, available: <u>https://youtube.com/playlist?list=PLyqSpQzTE6M_yqX6gn0Zmx-C7gv5IAEx5&feature=shared</u>
- 3. Ethan Png (2025). Visible Light Communication,

(https://www.mathworks.com/matlabcentral/fileexchange/53179-visible-lightcommunication), MATLAB Central File Exchange.

 Mohsan, S. A. H., Sadiq, M., Li, Y., Shvetsov, A. V., Shvetsova, S. V., & Shafiq, M. (2023). NOMA-Based VLC Systems: A Comprehensive Review. Sensors, 23(6), 2960. https://doi.org/10.3390/s23062960

Strength of CO-PO Mapping										PSO ping				
						Р	0						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	3	2	2	-	-	-	-	3	-	2	2
CO2	3	3	2	3	2	2	-	-	-	-	3	-	2	2
CO3	3	3 3 2 3 2 2 3 -									-	2	2	
CO4	3	3	2	3	2	2	-	-	-	-	3	-	2	2
CO5	3	3	2	3	2	2	-	-	-	-	3	-	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	( 'omponents for ( 'ontinuous ( 'omprehensive Evaluation								
1	Five Assignments (one each on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5)	10							
2	Performance in Unit Tests (5 tests, one on each unit)	10							
	Total	20							



#### K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

#### B. E. B. Tech. Pattern 2022 Semester: VIII

#### ETC224012D: e Mobility and Charging Infrastructure

Teaching Scheme:	Credit Scheme:	Examination Scheme:		
Theory :03hrs/week	02	EndSem Exam:60 Marks Continuous Comprehensive Evaluation: 40 Marks		

**Prerequisite Courses, if any: Electrical Circuits and Machines, Power Electronics, Drives and control** 

#### **Course Objectives:**

- 1. To introduce students to the fundamentals of battery-driven electric vehicles (EVs).
- 2. To provide an overview of the key focus areas within the EV domain, including vehicle dynamics, electric motors, power electronics, PWM, and control systems.
- 3. To develop a strong conceptual understanding of each EV subsystem and how they integrate into the complete vehicle.
- 4. To enable students to model, simulate, and analyze EV components using MATLAB/Simulink.
- 5. To prepare students with the foundational skills required for further study or careers in electric vehicle technology and related fields.

Course Outcomes: On completion of the course, students will be able to-						
	<b>Course Outcomes</b>		<b>Bloom's Level</b>			
CO1	Understand the structure and working principles vehicles and analyze vehicle dynamics using simula		2-Understand			
CO2	CO2 Explain the operation of DC drives and power electronic converters, and simulate their performance using MATLAB/Simulink.					
CO3	sensors in Irive	3-Apply				
CO4	Model and simulate Permanent Magnet Synchro (PMSM) drives for electric vehicle applications.	nous Motor	3-Apply, 4- Analyze			
CO5	Apply vector control strategies to PMSM drives a their performance through simulation.	nd evaluate	3-Apply, 5- Evaluate			
	COURSE CONTENTS					
Unit I	Introduction to Electric Vehicles and Vehicle Dynamics	COs Mapped - CO1				
Overview of Electric Vehicles: Types, components, and advantages, Comparison of EVs with conventional vehicles, Focus areas in EV technology and system architecture, Fundamentals of vehicle dynamics, Mathematical modelling of vehicle motion, Longitudinal and lateral dynamics., Simulation of vehicle dynamics in						

MATI	LAB/S	Simul	ink.											
Unit II	I	Fundamentals of Electric Drives and Power (07hr Electronics									7hrs)	COs N CO2	1apped -	
electro	Introduction to electric drives used in EVs, Basic principles of DC motor operation, Power electronic devices and their characteristics, Converter topologies for DC drives (Buck, Boost, etc.). Modelling and simulation of DC drives in MATLAB/Simulink.													
Unit III	5	Senso	rs in I	Elect	ric V	ehicle	es and	l E-M	Iobili	ty	(0'	7hrs)	COs M CO3	lapped –
curren encode in V/f time te	Role of sensors in EV performance, safety, and control; classification: position, speed, current, temperature, environmental, and inertial sensors, motor position sensors (Hall, encoders, resolvers); current and voltage sensors in converter feedback loops. Sensor role in V/f control, vector control, SVPWM schemes; feedback for closed-loop control; real-time torque and speed sensing. Voltage, current, and temperature sensors, SOC and SOH estimation, insulation monitoring, pilot/proximity sensors in charging systems.													
Unit IV				nt Ma	-	Sync	chron	ous N				7hrs)		lapped –
Constr	nic m	odeli	ng of	cing o PMS	of PM M dr	ISM, ives,	Comj Role	of po	sition	sens			and BLDO dback med	
Unit V		A	dvano	ced C	ontro	ol of I	PMSN	A Dri	ves		(0'	7hrs)	COs N CO5	lapped –
	LAB/S	Simul	ink.,	Integ	ration	of P	PMSM B/Sii	1 con	trol i k.				ontrol sch systems, ]	
Press,	2003 M. El	hsani,	Y. G	ao, S.	Gay		YBR	IDVE	EHICI	,	U		damentals, d Electric,	
					R	efere	ence H	Books	/ Cou	irses				
2. <u>htt</u>	<ol> <li>EV – Vehicle Dynamics and Electric Motor Drives</li> <li><u>https://onlinecourses.nptel.ac.in/noc24_ee30/preview</u></li> <li><u>https://www.youtube.com/playlist?list=PLp6ek2hDcoNCROoQbG05xNfiBEY7492Vn</u></li> </ol>													
			St	rengt	h of C	CO-PO	O Ma	pping					CO-PSO	Mapping
						PS	50	-					PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	3	-	-	-	-	-	-	-	3	2
CO2 CO3	3	22	23	-	3	-	-	-	-	-	-	-	3	3
CO3	3	2	$\frac{3}{2}$	-	3	-	-	-	-	-	-	-	3	3
CO5	3	2	3	-	3	-	-	-	-	-	-	-	3	3
	-	_	÷										-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	Five Assignments on Unit-1, Unit-2, Unit-3, Unit-4 and Unit-5	10						
2	Performance in Unit Tests (5 tests, one on each unit)	10						
	Total	20						



B. Y. B. Tech.Pattern 2022 Semester: VIII							
ETC224013: Financial Literacy							
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Theory : 03 hrs/week	03	Continuous Comprehensive Evaluation: 50 Marks					
Prerequisite Courses, if any: Basic Finance Knowledge.							
<b>Course Objectives:</b> The purpose of this course is to empower the students with sound financial knowledge and							

The purpose of this course is to empower the students with sound financial knowledge and financial management skills for their long-term financial being. The course is designed with the strong belief that financial well-being has a positive correlation with the overall well-being of an individual as well as society.

Course Outcomes: On completion of the course, students will be able to-							
	Course Outcomes	Bloom's Level					
CO1	Acquire financial management skills-essenti Century .understand financial planning, man and basic banking operations in India.		2-Understand				
CO2	Understand investment objectives, assess rist diversification and asset allocation strategies		2-Understand				
CO3	Understand investment options, stock marke selection criteria.	ts, and stock	2-Understand				
CO4	Understand financial planning concepts and knowledge of mutual funds and their types.	2-Understand					
CO5	CO5 Understand key theories of capital structure and dividend decisions, and analyze factors influencing dividend policy.						
	COURSE CONTE	NTS					
Unit I	Foundations of Finance	(06 hrs)	COs Mapped - CO1				
	or Financial Planning, Financial Goals, Financ n. Banking in India: Concepts of Banking, Ty						
Unit II	Investment Management-I	(06 hrs)	COs Mapped - CO2				
	nent Goals: Basic Investment Objectives, Time fication and Asset Allocation.	e Frame, Assessing Ris	sk Profile,				
Unit III	Investment Management-II	(06 hrs)	COs Mapped - CO3				
	Investment and Saving alternatives for a Common Investor: Insurance, Stocks, Bonds, etc. Stock Markets: Primary and Secondary Markets. Criteria for Stock Selection.						
Unit IV	Financial Planning and Mutual Funds	(06 hrs)	COs Mapped – CO4				

Financial Planning: Concept and Objectives. Mutual Funds: Concept and History of							
Mutual	Mutual Funds in India. Types of Mutual Funds.						
Unit V	Capital structure of firms	(06 hrs)	COs Mapped – CO5				
approac Relevar	Capital structure of firms-An overview, Net income approach, Net operating income approach, Traditional proposition, MM Proposition. Dividend decisions-An overview, Relevance of dividend, Dividend policy formulation, Dimensions of divined policy, Legal & procedural aspects of dividend decisions						
_	Text Books						
	Prasanna Chandra "Financial Management: Th Graw Hill Education Publishers.	eory and Practice" 9th	n Edition,				
	2. Brealey and Myers," Principles of Corporate Finance", 11th Edition, McGraw Hill Education Publishers						
3. Khan, M.Y. and Jain, P.K., "Financial Management", 7th Edition, McGraw-Hill Education Publishers.							
Reference Books							
6. Van Horne, J.C, "Fundamentals of Financial Management", 13th Edition, Prentice Hall Publishers.							

7. Pandey I.M., "Financial Management", 11th Edition, Vikas Publishers

Strength of CO-PO Mapping											CO-PSO Mapping			
	PSO										PSO			
	1	1	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	-	-	2	-	2	2	2	3	-	-
CO2	-	3	2	-	2	-	-	2	2	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	2	-	-	-	-	-
CO4	3	2	2	-	-	-	-	2	-	-	-	-	-	-
CO5	3	3	2	2	3	-	2	-	2	-	-	3	-	-

Guidelines for Continuous Comprehensive Evaluation of Online Course								
Sr. No.	Components for Continuous Comprehensive Evaluation (Online Course)	Marks Allotted						
1	https://onlinecourses.nptel.ac.in/noc24_mg21/preview							



B.E E&TC Pattern 2023											
ETC223015: On-Job Training           Teaching Scheme:         Credit Scheme         Examination Scheme:											
	Feaching Scheme:Credit SchemeExamination Scheme:Practical : 24 hr/week12TermWork: 200Marks										
Fractica	Oral : 100 Marks										
Course	Objectives:	I									
• W	ill expose technical s	students to the indus	trial environment, which cannot								
be	e simulated in the classroom and hence creating competent professionals										
fo	or the industry.										
• Pr	rovide possible opportunities to learn, understand and sharpen the real time										
	technical / managerial skills required at the job.										
	Exposure to the current technological developments relevant to the subject area of training.										
	Experience gained from the <b>'Internship'</b> will be used in classroom discussions.										
		-	nowledge and its applicability on								
• Le	earn to apply the Tec	hnical knowledge in	real industrial situations.	0							
	ain experience in wri		1 0								
	xpose students to the	<b>e</b> 1									
			ses, products and their application	18							
	ong with relevant asp										
	omote academic ,pro pose the students to	-	sonal development.								
			nistrative considerations that								
	fluence the working										
	-		and their habits, attitudes and								
	proach to problem so										
	Course Outcomes										
				Bloom's Level							
CO1	Comprehend profes	sional competence	through internation	1							
CO1 CO2	Comprehend professional competence through internship. Apply academic knowledge in a personal and professional										
004	environment.	iowieuge ill a persoi	iai and professional	3							
CO3		ional network and expose students to future									
	employees.	loyees.									
CO4			n their day to day life.	3							
CO5			ing social, economic and	4							
COL	administrative cons		minutions	5							
<b>CO6</b>	make own career g	oals and personal as	spirations.	5							

Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment practices and culture. Internship is structured, short-term, supervised training often focused around particular tasks or projects with defined time scales. Core objective is to expose technical students to the industrial environment, which cannot be simulated/experienced in the classroom and hence creating competent professionals in the industry and to understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Engineering internships are intended to provide students with an opportunity to apply theoretical knowledge from academics to the realities of the field work/training. The following guidelines are proposed to give academic credit for the internship undergone as apart of the Final Year Engineering curriculum.

#### A. Duration:

Internship to be completed before commencement of semester 8 of at least Six months; and it is to be assessed and evaluated in semester 8.

#### **B. Framework of Internship:**

- Minimum duration of internship is of six months.
- Internship to be done during 8th semester.
- Students can search for an industry / government organization semi- government organization for an internship.
- Students have to take prior written permission for internship from the HOD (E&TC).
- Leave will not be permitted during the internship period. In case of emergency, take prior permission from HOD (E&TC).
- Students have to maintain internship daily diary & submit to the department after completion of internship.
- Students have to prepare an internship report & submit to the department after completion of internship.
- Students have to prepare an internship and appear for viva to the committee comprising HOD (E&TC), Academic Coordinator, Internal Supervisor.

#### C. Internship Guidelines:

#### a) Guidelines to the Institute:

Department will arrange internship for students in industries/organization after seventh semester or as per AICTE/ affiliating University guidelines & managing internships. The general procedure for arranging internship is given below:

Step 1: Request Letter/ Email should go to industry to allot various slots of 27-30 weeks as

internship periods for the students. Students request letter /profile / interest areas may be submitted to industries for their willingness for providing the training.

**Step 2:** Industry will confirm the training slots and the number of seats allocated for internships via Confirmation Letter/Email. In case the students arrange the training themselves the confirmation letter will be submitted by the students.

**Step 3:** Students on joining Training at the concerned Industry / Organization, submit the Joining Report/ Letters / Email.

**Step 4:** Students undergo industrial training at the concerned Industry / Organization. Inbetween Faculty Member(s) evaluate(s) the performance of students once/twice by visiting the Industry/Organization and Evaluation Report of the students is submitted in department.

Step5:Students will submit training report after completion of internship.

Step6:Training Certificate to be obtained from industry.

**Step 7:** List of students who have completed their internship successfully will be issued by Training and Placement Cell.

#### b) Guidelines to the students:

Any absenteeism by students during their internship should be informed immediately to the mentor/reporting manager and the internal guide. No special considerations will be accepted. Students cannot take leave for college work or fest activities. The leave permission for any college related activities will be solely approved by the HOD. The monthly attendance format should be duly submitted to the internal guide by the intern.

#### c) Internal reporting Guidelines:

Every intern should send weekly report to their internal guide without fail. It is mandatory for the intern to send weekly reports to their respective guide on regular basis. Interns should have at least fortnightly verbal communication with the internal guide without fail. In cases where in the company wants to secure their confidential information in the project / internship report, the internal guide should duly co-ordinate with the respective mentor/reporting manager on the method of reporting to assure that no information will be leaked outside and is purely for academic purposes.

#### d) Internship Diary/Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should recording the daily training diary account of the observations, impressions, information

gathered and suggestions given, if any. The training diary/workbook should be signed after every day by the supervisor/ in charge of the section where the student has been working. Internship Diary/ workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training. Internship Diary / workbook may be evaluated on the basis of the following criteria:

- Proper and timely documented entries.
- Adequacy &quality of information recorded
- Data recorded.
- Thought process and recording techniques used.
- Organization of the information.

#### **Monitoring & Evaluation of Internship**

The industrial training of the students will be evaluated in three stages:

- $\Box$  Evaluation by Industry.
- $\Box$  Evaluation by faculty supervisor on the basis of site visit(s) or periodiccommunication.

□ Evaluation through seminar presentation/viva-voce at the Institute (This evaluation can be reflected through marks assigned by Faculty Mentor).

#### **1. Evaluation by Industry**

The industry will evaluate the students based on the punctuality, eagerness to learn, maintenance of daily diary and skill test in addition to any remarks. Finally, Industry supervisor will evaluate overall performance of intern on a scale of 1-10 where 1 indicates Unsatisfactory and 10 indicates Excellent Performance and any value in between 1 to 10 holds meaning accordingly.

## **2.** Evaluation by faculty supervisor on the basis of site visit(s) or periodic communication.

TPO/Staff/Faculty Mentor of the institutes should make a surprise visit to the internship site, to check the student's presence physically, if the student is found absent without prior intimation to the concerned Industry, entire training may be cancelled. Students should inform through email to the faculty mentor as well as the industry supervisor at least one day prior to availing leave. Students are eligible .To avail 1day or 2 day leave in 6months of the internship period apart from holidays and weekly offs.

## **3.** Evaluation through seminar presentation/viva-voce at the Institute (This evaluation can be reflected through marks assigned by Faculty Mentor)

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute.

The evaluation will be based on the following criteria:

- $\Box$  Quality of content presented.
- □ Proper planning for presentation.
- $\Box$  Effectiveness of presentation.
- $\Box$  Depth of knowledge and skills.
- □ Attendance record, daily diary, departmental reports shall also be analyzed along with the

Internship Report.

Seminar presentation will enable sharing knowledge & experience amongst

students&Teacher, and build communication skills and confidence in students

#### f) Internship Report:

The report shall be presented covering following recommended fields but limited to:

- □ Title/Cover Page
- □ Internship completion certificate.
- □ Internship Place Details- Company background-organization and activities/Scope and

object of the study / personal observation.

- □ Index/Table of Contents
- □ Introduction
- □ Title/Problem statement/objectives
- □ Motivation/Scope and rationale of the study
- $\Box$  Methodological details
- □ Results/Analysis /inferences and conclusion
- □ Suggestions/Recommendations for improvement to industry, if any
- $\Box$  Attendance Record
- □ List of reference(Library books, magazines and other sources)

#### g) Feedback from internship supervisor(External and Internal):

Post internship, faculty coordinator should collect feedback about student with following recommended parameters:

- ✓ Technical knowledge
- ✓ Discipline
- ✓ Punctuality
- ✓ Commitment
- ✓ Willingness to do the work

- ✓ Communication skill
  ✓ Individual work
  ✓ Teamwork
  ✓ Leadership

Strength of CO-PO Mapping												PO-PSO mapping		
CO	РО											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	3	2	2	3	2	3	3	-	2	2
CO2	3	3	3	2	2	2	1	3	3	3	3	-	2	3
CO3	2	2	2	2	1	1	3	3	3	2	2	-	1	1
CO4	1	2	1	2	1	3	3	3	2	2	3	-	1	1
CO5	1	2	1	2	1	3	3	2	3	3	3	-	2	2
CO6	2	2	1	1	2	2	2	3	3	3	3	-	2	2