

	CIV225101: Nu	F. Y. M.Tech Pattern 2022 Semeste merical Methods in Str		
Teaching	Scheme:	Credit Scheme:	Examination Scheme:	
Theory : (Theory : 03 hrs/week 03 InSem Exam: 20Mark Continuous Compreh Evaluation: 20Marks EndSem Exam: 60Ma			ensive
	ite Courses, if any: Engine troductory knowledge of pr		culus, Differential equation	ions, Linear
Course Ob	•	-		
	roduce students to classical		• • •	-
	pose students to concepts su		nd tolerances and their e	ffect on the
	y of the solutions produced			
	prove programming skills a ation tool	ind familiarize students v	with the computer as an e	engineering and
	hance fundamental understa	anding of concepts acqui	red in algebra calculus	and differential
equati		and the concepts acqui	icu ili algebia, calculus a	
equality	ons			
Course O	utcomes: On completion of	f the course, students wil	l be able to-	
		Bloom's Level		
CO1	Identify various nume	erical methods for per	forming tasks, such as	1
	interpolation, differen	tiation, integration, se	olution of linear and	
		lution of differential and		
CO2	-	, skills, and modern engi	neering tools necessary	2
~~~	for engineering practice			
CO3		11	roximate solutions to	3
	mathematical problems			A
CO4	-	ccuracy of various nume	erical methods and their	4
CO5	applicability. Formulate algorithms a	nd programming		5
		1 0 0	na	J
		COURSE CONTEN	15	
	ntroduction to Matlab an and eigen value problems	d solution of equations	8	CO1, CO2, CO3
	on to MATLAB, MATLAB	window, Various comr	nand used in command	window, Matrices
	B, Steps in writing a MAT			
and transc	endental equations - Fixe	ed point iteration meth	od – Newton Raphson	method Gauss
	n method –Gauss Jordan m	ethod –Gauss Jacobi and	d Gauss Seidel – Eigen	values of a matrix
by Power n	nethod			
TIn:4 TT	Numerical Colutions of Di	Formation Econotions	ο	
	Numerical Solutions of Dif	-		CO1, CO2, CO4
Ordinary D	Differential Equations [ODE	[] Taylor series method,	Euler Method, Runge-K	utta fourth order,

Simultaneous equations using Runge-Kutta 2nd order method Unit III Numerical differentiation and integration	8	CO1, CO2, CO3
		, ,
Trapezoidal rule, Simpson's 1/3rdRule, Simpson's 3/8thRule, C		2 point and 3 point
method. Double Integration Trapezoidal rule, Simpson's 1/3 rd		I
Unit IV Curve Fitting and Regression Analysis	8	CO3, CO4
Least square method, polynomial functions, curve fitting. Interp	olation – Polynor	nial approximation,
Lagrange's method, spline interpolation.		
Unit V Finite difference method	8	CO3, CO5
Forward, backward and centered finite difference approximatio	ns to the derivativ	es. Applications to
indeterminate beams, columns and plates.		
Text Books		
1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edit	ion, Cengage Lear	rning,
2016.		
2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engi	neering and Scien	ce",
Khanna Publishers, 10th Edition, New Delhi, 2015.	-	
Reference Books		
1. E. Ward Cheney, David R. Kincaid, Numerical Methods and	Applications, Bro	oks
Cole		
2. Cengage Learning India		
3. S. C. Chapra, R. P. Canale, Numerical Methods for Engineer	ing, TMH Publica	tions
	<b>U</b>	

4. E. Balgurusamy, Numerical Methods, TMH Publications

		Strength of CO-PO/PSO Mapping						
СО		РО						
	1	2	3	4	5	6		
CO 1	3	2	3	3	1	1		
CO 2	3	2	3	3	1	1		
CO 3	3	2	3	3	1	1		
CO 4	3	2	3	3	1	1		
CO 5	3	2	3	3	1	1		

	<b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b>				
Sr. No.	<b>Components for Continuous Comprehensive Evaluation</b>	Marks Alloted			
1	Assignments	10			
2	Mini Project	10			



		F. Y. M.Tech Pattern 2022 Semeste 225102: Structural Dy			
Teaching	g Scheme:	Credit Scheme:	Examination Schem	ie:	
Theory : 03 hrs/week		03 InSem Exam: 20Ma Continuous Compr Evaluation: 20Mar EndSem Exam: 60M		ehensive ks	
Prerequi	isite Courses, if any: Engine	eering Mathematics-Lim	hits, Differentiations, Int	tegrations.	
<ol> <li>To an area of the second second</li></ol>	dify MDOF subjected free an earn design of machine found	ed SDOF subjected free onse spectra and differe nd forced vibrations. lations and techniques o	and forced vibrations. nt methods of nonlinear of vibration response cor		
Course (	<b>Dutcomes:</b> On completion o		ll be able to–	Bloom's Level	
	Course Outcomes				
CO1	CO1 Solve single degree of freedom systems subjected to free and forced vibrations.		2		
CO2	in seismic analysis.	nent of response spectra	-	2	
CO3	Apply fundamental the motion to field proble	neory of structural dyna ms	amics and equation of	3	
<b>CO4</b>	Evaluate response of a free and forced vibrat	nulti degree of freedom	systems subjected to	4	
CO5	5	nalysis of single and m AB programs / software	-	5	
		COURSE CONTENT	ſS		
U <b>nit I</b>	Introduction to Structura	al Dynamics	8	CO1, CO3, CO5	
forces, Fu	ce of vibration analysis, diffundamental concepts of vibration indamental concepts of vibration of the freedom, mathematical model.	ations, dynamic equilit	prium of motion, stiffne	ess and damping,	
Unit II	Single degree of freedom	systems	8	CO1, CO3, CO5	

Single degree of freedom systems subjected to forced vibrations: undamped and damped, SDOF systems subjected to harmonic loading, resonance, response to support motion, force transmitted to the foundation, transmissibility.

-		ım				8		CO1, CO2, CO3, CO4, CO5
	to general dynamic l evaluation of Dub theory and develop	amel's In	tegral, dir	ect integra	tion of th	e equations		-
Unit IV	Non-linear struc	tural resj	ponse			8		CO3, CO4, CO5
Non-linear structural response- constant acceleration method, linear acceleration method, Newmark- $\beta$ method, Wilson- $\theta$ method.								
DOF), D	estems (Lumped pa etermination of m tion method, Dynar	atural fr	equencies	and mo				· -
Unit V	MDOF system					8		CO3, CO4, CO5
Publicatio	., and Kim, Y. N., ns. , A. K., 'Dynamics		l Dynamic	-		-		
			Refere	ence Book	S			
Ave, Berk 2. Mario F 2000, Klu 3. Roy D. 2012.	and Penzien, J., 'D reley, USA P. and William L., ' wer Academic Pub and Rao G., 'Elem . and Kevin W., 'S	Structura lishers. ents of St	l Dynamic ructural D	es - Theor	y and Cor A New P	nputation', '	Update John V	d With Sap Viley and Son,
			Stren	ngth of CO	)-PO Ma	pping		
	СО			0	0	<u> </u>		
		1	2	3	4	5	6	
	CO 1	3	2	3	3	1	1	
	CO 2	3	2	3	3	1	1	
	CO 3	3	2	3	3	3	1	_
	CO 4 CO 5	3	23	3	3	1 2	1 1	_

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	<b>Components for Continuous Comprehensive Evaluation</b>	Marks Alloted			
1	Assignment	10			
2	Mini Project	10			



		F. Y. M.Tech Pattern 2022 Semester IV225103: Solid Mecha			
Teaching	Scheme:	Credit Scheme:	Examination Scheme	:	
Theory : 0	)3 hrs/week	03 InSem Exam: 20Mar Continuous Compre Evaluation: 20Mark EndSem Exam: 60M		hensive s	
Prerequis	ite Courses, if any: Enginee	ring Mathematics, Stren	gth of Materials, Structu	ral Mechanics	
<ol> <li>To edu</li> <li>To illu</li> <li>To exp</li> <li>To enh</li> </ol>	e knowledge about stress an acate about generalized equa uminate compatibility betwee blain the concepts of torsion. nance the knowledge about p	tion of Hooke's law. en stress and strain. lasticity.	be able to-		
		omes: On completion of the course, students will be able to– Course Outcomes			
CO1	Understand principles analysis of structures.	Understand principles of elasticity and plasticity to be used for the			
CO2	Define basic definition	Define basic definitions of continuum mechanics, such as deformations, strains, stress.			
CO3	Solve simple elasticity	problems.		2	
CO4	Apply the principles of	f solid mechanics to solv	ve complex problems.	3	
CO5	Analyze torsion in bar	s and pressure in cylinde	ers.	4	
		COURSE CONTENT	S		
Unit I	Analysis of Stress and Str	ain	8	CO1, CO3, CO5	
parallelepip of stresses	stress at a point, stress ten bed in Cartesian coordinates , stress invariants. The st ity condition.	system, derivation of stre	ess equilibrium equation	s, transformation	
Unit II	Stress-Strain Relations	Stress-Strain Relations 8			
stress func Strain displ	d Hook's law, plane stress, tion, relationship between lacement relations, Stress- st train conditions.	Cartesian and Polar co	ordinate system, Equili	brium equations,	
Unit III	Axisymmetric Problems a	and Torsion	8	CO1, CO2, CO3, CO4, CO5	

Equilibrium equations, Strain displacement relations, Stress- strain relationship, Stress compatibility equations, Plane stress and Plane strain conditions. Cylinders subjected to internal and external pressure

Assumptions and Torsion equation for general prismatic solid bars, warping of Non-circular sections and St. Venant's theory, Prandtle's stress function approach. Torsion of Circular, Elliptical and Triangular cross-section bar.

Unit IV	Introduction to Plasticity	8	CO3, CO4,				
Stress - strain diagram - Ideal plastic body - Illustration of plastic Analysis - Yield criteria - Rankine's							
theory - St.	theory - St.Venant's theory - Tresca Criterion - Beltramis theory - Von Mises criterion - Mohr's theory						
of yielding	- Yield surface - Flow rule (stress - strain relation f	or perfectly plastic flow	v)- Prandtl Reuss				
equality - p	lastic work - stress - strain relation based on Tresca -	plastic potential - uniq	ueness of a stress				
distribution	- strain hardening.						
Unit VPlastic analysis of Thick Cylinder8CO3, CO4,							
CO5							
<b>F1</b> / 1		1 1 1 1	• • • • • • • •				

Elasto-plastic problems of beams in bending – thick hollow spheres and cylinders subjected to internal pressure – General relations - plastic torsion –Nadai's and heap analogy

#### **Text Books**

1. Mohammed Ameen, "Computational Elasticity", Narosa Publishing House, 2005.

2. Arvind Kumar Singh., "Mechanics of Soilds", Prentice Hall of India, 2007.

#### **Reference Books**

1. Sadhu Singh, Theory of Elasticity, Khanna Publishers.

2. L. S. Srinath, Advanced Mechanics of Solids, Tata McGraw-Hill Publications

3. Chakrabarty J, Theory of Plasticity, McGraw-Hill Publications.

4. Timoshenko and Goodier, Theory of Elasticity, McGraw-Hill Publications.

		Strength of CO-PO/PSO Mapping						
СО		РО						
	1	2	3	4	5	6		
CO 1	3	1	3	2	1			
CO 2	3	1	3	2	1			
CO 3	3	1	3	2	1			
CO 4	3	1	3	2	1			
CO 5	3	1	3	2	1			

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted			
1	Assignment	10			
2	Mini Project	10			



		F. Y. M.Tech Pattern 2022 Semester: : Advanced Design of S			
Teaching Sc	heme:	Credit Scheme:	Examination Scheme	:	
Theory : 03	hrs/week	03	03 InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks		
<b>Prerequisite</b> Design of Ste	Courses, if any: Enginee	ring Mathematics, Engin	eering Mechanics, Struc	ctural Analysis,	
<ol> <li>To impar</li> <li>To teach</li> <li>To expla</li> <li>To edify</li> </ol>	w knowledge of steel struc rt knowledge about analys the analysis of tubular structure in the concepts and design the knowledge about wate	is of transmission towers actures. of castellated beams. or tanks.			
Course Outo	comes: On completion of t		be able to-	Dia and a Lanal	
		<b>Course Outcomes</b>		Bloom's Level	
C01	CO1 Understand basics of hoarding structure and castellated learning to choose the desired member after analysis			1	
CO2	Compare different typ per given parameters.	es of microwave towers	and analyzing them as	2	
CO3	Analyze transmission	n towers by making s and structural analysis.		4	
CO4	Design tubular structu	res and cold form light g ts of trigonometry and ste	auge sections by	5	
CO5		aging, foundation and an		5	
		COURSE CONTENTS	5		
Unit I H	Ioarding Structures, Cas	stellated Beams	8	CO1	
•	hoarding structures under and design of castellated		<b>1</b>		
	Alicrowave towers	beams for bending and s	8	CO2	
	various structural configu	rations, function and ana	lysis of microwave tow		
and wind load	ls.		-		
	<b>Fransmission towers</b>		8	CO3	
	structural configuration, nditions, top most powe		•		
Unit IV 7	Tubular structures, Coldections	-form light guage	8	CO4	
	oular trusses using circula	ar hollow, rectangular ho	ollow sections as per c	ode, detailing of	

joints. Cold form light gauge section: Advantage, type of cross section, stiffened, multiple stiffened and un-stiffened element, flat-width ratio, effective design width, design of light gauge compression, tension and flexural members as per code.

Unit V Water tanks

8 CO5

Design of rectangular riveted steel water tank, Tee covers, Plates, Stays, Longitudinal and transverse beams, Design of staging, Base plates, Foundation and anchor bolts.

#### **Text Books**

1.M Raghupathi, Design of steel structures, Tata McGraw Hill, New Delhi.

2. S K Duggal, Limit state design of steel structures, Tata McGraw Hill Education.

### **Reference Books**

1. Ram Chandra, Design of steel Structures, Volume II, Standard Book House, New Delhi.

2. Punmia and Jain, Comprehensive Design of steel structure, Laxmi Publication, New Delhi.

3. N Subramanian, Design of steel structures, Oxford University Press.

		Strength of CO-PO/PSO Mapping								
CO		РО								
	1	1 2 3 4 5 6								
CO 1	3	2	3	3	1	1				
CO 2	3	3 2 3 3 1 1								
CO 3	3	3 2 3 3 1 1								
CO 4	3	3 2 3 3 1 1								
CO 5	3	2	3	3	1	1				

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	<b>Components for Continuous Comprehensive Evaluation</b>	Marks Alloted			
1	Assignment	10			
2	Mini Project	10			



Teaching Scheme:         Credit Scheme:         Examination Scheme:           Theory : 03 hrs/week         03         InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks           Prerequisite Courses, if any: Engineering Mathematics         Course Objectives:         1           1. To understand the mathematical tools that are needed to solve optimization problems         2           2. To apply the theory of optimization methods for solving various types of optimization problems         3           3. To enumerate the fundamental knowledge of Linear Programming problems.         4           4. To Learn classical optimization techniques and numerical methods of optimization         5           5. To edify the knowledge about Replacement models.         Bloom's L           Course Outcomes: On completion of the course, students will be able to-         2           CO1         Discuss the application of various Optimization Techniques in Civil         2           engineering project         3         3           CO2         Apply appropriate classical optimization method to obtain optimum         3           solution         3         solution         3           CO3         Formulate Linear programming problem for Civil engineering approperiate numerical iterative method to obtain optimum solution         3           CO4         Apply concept of Transportation and Assignment Model to com			M.Tech Pattern 2022 Semest 5104-B: Optimization				
Continuous Comprehensive Evaluation: 20Marks         Prerequisite Courses, if any: Engineering Mathematics         Course Objectives:         1. To understand the mathematical tools that are needed to solve optimization problems         2. To apply the theory of optimization methods for solving various types of optimization problems         3. To enumerate the fundamental knowledge of Linear Programming problems.         4. To Learn classical optimization techniques and numerical methods of optimization         5. To edify the knowledge about Replacement models.         Course Outcomes: On completion of the course, students will be able to-         CO2       Apply appropriate classical optimization method to obtain optimum solution       Bloom's L         CO3       Formulate Linear programming problem for Civil engineering aproblems and obtain optimum solution       3         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         Unit 1       Introduction       8       CO1	Teaching S						
<ul> <li>2. To apply the theory of optimization methods for solving various types of optimization problem</li> <li>3. To enumerate the fundamental knowledge of Linear Programming problems.</li> <li>4. To Learn classical optimization techniques and numerical methods of optimization</li> <li>5. To edify the knowledge about Replacement models.</li> </ul> Course Outcomes: On completion of the course, students will be able to-           Course Outcomes:         Bloom's L           CO1         Discuss the application of various Optimization Techniques in Civil engineering project         2           CO2         Apply appropriate classical optimization method to obtain optimum solution         3           CO3         Formulate Linear programming problem for Civil engineering problems and obtain optimum solution         3           CO4         Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.         3           CO5         Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.         3	Theory : 03	hrs/week	03	Continuous Compreh Evaluation: 20Marks	Continuous Comprehensive Evaluation: 20Marks		
1. To understand the mathematical tools that are needed to solve optimization problems         2. To apply the theory of optimization methods for solving various types of optimization problem         3. To enumerate the fundamental knowledge of Linear Programming problems.         4. To Learn classical optimization techniques and numerical methods of optimization         5. To edify the knowledge about Replacement models.         Course Outcomes: On completion of the course, students will be able to-         Course Outcomes: On completion of various Optimization Techniques in Civil engineering project         CO1       Discuss the application of various Optimization method to obtain optimum solution         CO2       Apply appropriate classical optimization method to compute the cost of an optimum solution         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.         COURSE CONTENTS	Prerequisit	e Courses, if any: Engine	ering Mathematics				
Course Outcomes       Bloom's L         CO1       Discuss the application of various Optimization Techniques in Civil engineering project       2         CO2       Apply appropriate classical optimization method to obtain optimum solution       3         CO3       Formulate Linear programming problem for Civil engineering problems and obtain optimum solution       3         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         COURSE CONTENTS         Unit I       Introduction       8       CO1	<ol> <li>To enur</li> <li>To Lear</li> </ol>	nerate the fundamental kn n classical optimization te	owledge of Linear Pro-	gramming problems.	-		
CO1       Discuss the application of various Optimization Techniques in Civil engineering project       2         CO2       Apply appropriate classical optimization method to obtain optimum solution       3         CO3       Formulate Linear programming problem for Civil engineering problems and obtain optimum solution       3         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         COURSE CONTENTS         Unit I       Introduction       8       CO1	Course Out	comes: On completion of		ill be able to-			
engineering project       Apply appropriate classical optimization method to obtain optimum solution       3         CO3       Formulate Linear programming problem for Civil engineering problems and obtain optimum solution       3         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         Unit I       Introduction       8       CO1							
Solution       solution         CO3       Formulate Linear programming problem for Civil engineering problems and obtain optimum solution       3         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         Unit I       Introduction       8       CO1	CO1		2				
problems and obtain optimum solution         CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         COURSE CONTENTS         Unit I       Introduction       8       CO1	CO2		3				
CO4       Apply concept of Transportation and Assignment Model to compute the cost of an optimum route between various sources and destination.       3         CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         COURSE CONTENTS         Unit I       Introduction       8       CO1	CO3		3				
CO5       Apply appropriate numerical iterative method to obtain optimum solution and assess the useful life of Equipment using replacement model technique.       3         COURSE CONTENTS         Unit I Introduction       8       CO1	CO4	Apply concept of Trans	portation and Assignment		3		
Unit IIntroduction8CO1	CO5	solution and assess th		-			
			COURSE CONTEN	ITS			
ntroduction to optimization techniques, Applications to various civil engineering problem	Unit I In	troduction		8	CO1		
ntroduction to Linear and Non-linear programming methods (with reference to objective function		-		-			

Unit II Classical optimization methods	8	CO2
Single and multiple problems with equality and inequality cons Lagrangian method, Convex and concave functions	straints, Hessian m	atrix and its use,
Eagrangian method, convex and concave runctions		

Formulation of Linear Programming Problem, Standard LP problem, Assumptions in LP, Graphical solutions of LP problem, Simplex method to solve LP problems, Use of big M and two phase method.

Unit IVAdditional topics in Linear programming8CO4

Transportation problem, Assignment problem, Mathematical methods of transportation and assignment problem, Methods of solution, Variation in transportation and assignment problems such as unbalanced problem

Unit V	Numerical iterative methods and Replacement	8	CO5
	model		

One dimensional non linear functions without constraints, Dichotomous, Fibonacci and golden section search methods. Replacement of items whose maintenance and repair cost increase with time, ignoring time value of money.

#### **Text Books**

1. Prem Kumar Gupta, D.S. Hira, Operations Research, S. Chand & Company, New Delhi.

2. V K Kapoor, Operation Research, Sultan Chand & Sons, New Delhi.

#### **Reference Books**

- 1. Operations Research by Hamdy A. Taha
- 2. Engineering Optimization by S.S.Rao
- 3. Quantitative Techniques in Management by N.D. Vohra (Mc Graw Hill)
- 4. A System Approach to Civil Engineering Planning & Design by Thomas K. Jewell (Harper Row Publishers)
- 5. Introduction to Operations Research by by Hillier and Lieberman, Mc Graw Hill

		Strength of CO-PO/PSO Mapping							
СО		РО							
	1	1 2 3 4 5 6							
CO 1	3	-	-	-	2	-			
CO 2	3	3 2 -							
CO 3	3	3 2 2 -							
CO 4	3	-	-	2	2	_			
CO 5	3	-	-	-	2	-			

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted				
1	Assignment	10				
2	Mini Project	10				



M.Tech Pattern 2022 Semester: I CIV225104-C: Structural Design of Precast Concrete Structures						
Teaching Scheme:Credit Scheme:Examination Scheme:						
Theory : 03 hrs/week	03	InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks				

Prerequisite Courses, if any: Structural Analysis, Structural Design of RC structures

#### Course Objectives:

- 1. To understand the precast concrete design and its material.
- 2. To describe the concepts of bond on different types of concrete with precast concrete and Use of different tools.
- 3. To illustrate the design of different precast members i.e. floors and beams
- 4. To learn the design of precast members of Columns and Shear Wall
- 5. To consider the mechanism of Joints and its Connections.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	<b>Bloom's Level</b>				
CO1	Enumerate the Precast concrete construction and materials.	2				
CO2	<b>CO2</b> Compare the concepts of bond on different types of concrete with precast concrete and use of different tools.					
CO3	Apply the design of Precast construction for different precast members i.e floors and beams					
<b>CO4</b>	CO4 Calculate the design of precast members of Columns and Shear Wall					
CO5	Formulate the mechanism of Joints and its Connections	4				
	COURSE CONTENTS					
nit I Hi	istory and Development	8	CO1, CO3, CO5			

a) History and Development of Precast concrete construction, Advantages and disadvantages of precast concrete construction; general principles of design; mechanical handling of large projects like stadium, bridges etc.

b) Materials viz. Concrete, Self Compacting Concrete, Grout, Reinforcement and structural welded wire cages. Requirements of industrialized buildings, standardization of precast elements and unification of building design. Influence of manufacture, transport and erection technologies on design solution

a) Definition, basic concept like bond increase, comparison with concretes like RCC, Prestressed, Asbestos cement, Fiber reinforced, Polymer concretes. Composition of ferrocement, special types of ferrocement. Ferrocement as substitute for conventional building materials. typical characteristics and their applications. b) Raw materials, skills, tools and plants. Ferrocement as material of construction. Forming a ferrocement structure. Properties and specifications of raw materials. Proportioning of cement mortar. Job requirements of required skills. Tools and plants. **Precast Floors and Beams** CO1, CO2, CO3 Unit III 8 a) Precast Concrete Floors: Precast flooring options-flooring arrangements-design of individual units-design of composite floors- Beams and roof elements b) Precast Concrete Beams: Types of composites -non composite-reinforced beam -pre stressed beam **Unit IV Columns and Shear Wall** 8 CO4, CO5 Precast column design -precast shear walls- infill walls-cantilever walls -distribution of horizontal forces Unit V **Joints and Connections** 8 CO4, CO5 a) Joints: Basic mechanism-compression joint-shear joint - tension joint.

b) Connections: Pin jointed connection-moment resisting connections- beam to column column foundation connections.

#### **Text Books**

1. Promyslolw, V. Design And erection of Reinforced Concrete Structures, MIR Publishers, Moscow 1980

2. Koncz.T., Manual of Precast Concrete Construction, Vol.I, II and III, Bauverlag, GMBH, 1971.

#### **Reference Books**

1. Hass A.M., Precast Concrete – Design and applications Applied Science, 1983.

2. David Sheppard –Plant cast, Precast and Prestressed concrete, McGraw Hill; 1989

3. NBC – 2005 (Part I to Part VII) BIS Publications, New Delhi, IS 15916- 2011, IS 11447, IS6061 – I and III

4. R. P. Johnson: Composite Structure of Steel and Concrete (Volume 1), Blackwell Scientific Publication (Second Edition), U.K., 1994.

		Strength of CO-PO Mapping					
СО			Р	0			
	1	1 2 3 4 5 6					
CO 1	3	1	1	3	1	1	
CO 2	3	2	1	2	1	1	
CO 3	3	2	2	3	2	2	
CO 4	3	2	2	3	2	2	
CO 5	3	2	3	3	2	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted				
1	Assignment	10				
2	Mini Project	10				



CIV225104	M.Tech Pattern 2022 Semes -D: Structural Design o	
Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory : 03 hrs/week	03	InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks
Prerequisite Courses, if any: Prest Course Objectives:	ressed concrete	
<ol> <li>To study the various bridge for</li> <li>To get familiarized with the de</li> <li>To design the pre-stressed cond</li> <li>To design of different bridges</li> </ol>	sign of short span and lor prete bridges.	ng span bridges.
<ol> <li>To design of different bridges</li> <li>To design the substructure for b</li> </ol>	oridges with different typ	es foundations.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	<b>Bloom's Level</b>				
CO1	Interpret the design theories for super structure and bridges.	2				
CO2	Design short span bridges and long span bridges theories	5				
CO3	Design prestressed concrete bridges	5				
CO4	Design of different types of bearings and its connection	5				
CO5	<b>CO5</b> Design of abutments, piers and various types of foundations for bridges.					
	COURSE CONTENTS					
Unit I El	ements of Bridge	8	CO1, CO2, CO3			

General basic bridge forms - Beam, arch, suspension, various types of bridges, selection of type of bridge and economic span length, drainage, road, kerb, classification, investigation and planning. design loads for bridges - Dead load, live load, IRC loading, IRS loading, Aashto loading, wind load, longitudinal forces, centrifugal forces, buoyancy, water current forces, thermal forces deformation and horizontal forces

Design of Deck slab bridge - T-Beam girder bridge - Pigeaud's Theory - Courbon's Method - Design of box culvert (Principles only).

Design principles of continuous bridges - Box girder bridges and balanced cantilever bridges - cable

stayed.							
Unit III Design of PSC Bridges	8	CO1, CO2, CO3					
Flexural and Torsional parameters - Courbon's Theory - Distribution Coefficient by exact analysis - Design of girder section - maximum and minimum prestressing forces - Eccentricity - Live load and dead load shear forces - Cable Zone in Girder - Check for stresses at various sections - Check for diagonal tension - Diaphragms - End Block -Short term deflections							
Unit IV Classification and Design of Bearings	8	CO2, CO4					
Metallic bearings, Elastomeric bearings, POT and PTFE bear	rings.	•					
Unit V Abutment and Pier	8	CO1,CO4, CO5					
Analysis and Design of Abutment and Pier. Introduction to	Design of Open We	II, Pile and Caisson					
Foundations.	0						
Text Books							
1. Ponnuswamy, S "Bridge Engineering", Tata McGraw	r-Hill, 2008.						
2. Jagadeesh, T. R. and Jayaram, M. A., "Design of Br	idge Structures", Pre	ntice Hall of India Pvt					
Ltd., 2004.							
Reference Books	5						
1. Johnson Victor, D, "Essentials of Bridge Engineering", O	xford & IBH, 2007.						
2. Raina, V. K., "Concrete Bridge Practice", Tata McGraw H	Hill Publishing Comp	any, New Delhi, 1994.					
3. Bakht, B and Jaegar, L.G., "Bridge Analysis Simplified",	McGraw Hill, 1985.						
4. Derrick Beckett, "An Introduction to Structural Design	of Concrete Bridge	es" Surrey University					

 Derrick Beckett, "An Introduction to Structural Design of Concrete Bridges", Surrey University Press, Henley Homes, Oxford Shire 1973.

		Strength of CO-PO Mapping					
CO		РО					
	1	2	3	4	5	6	
CO 1	3	1	1	2	1		
CO 2	3	2	3	3	2	1	
CO 3	3	2	3	3	2	1	
CO 4	3	2	3	3	2	1	
CO 5	3	2	3	3	2	1	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted			
1	Assignment	10			
2	Mini Project	10			



Teaching Scheme:       Credit Scheme:       Examination Schem         Theory : 03 hrs/week       03       InSem Exam: 20M Continuous Compute Valuation: 20Mar EndSem Exam: 60         Course Objectives:       1.       To familiarize with basics of research and the research process       2.         Understand the steps followed in research       3.       Analyze the information related to research         3.       Analyze the information related to research       4.         4.       Understand the concepts, procedure of IPR.       5.         5.       Understand the concepts, procedure of Patent Rights         Course Outcomes:         Course Outcomes:         Course Outcomes:         Course Outcomes         CO1         Develop understanding on objectives of doing research and resear process.         CO2       Apply the subject knowledge in formulating a research problem         CO3       Understand the different steps involved in research in order to devel effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem, Sources of research problem, Criteria Character research	ghts
Continuous Compression         Course Objectives:         1. To familiarize with basics of research and the research process         2. Understand the steps followed in research         3. Analyze the information related to research         4. Understand the concepts, procedure of IPR.         5. Understand the concepts, procedure of Patent Rights         Course Outcomes: On completion of the course, students will be able to–         Course Outcomes:         CO1       Develop understanding on objectives of doing research and resear process.         CO2       Apply the subject knowledge in formulating a research problem         CO3       Understand the different steps involved in research in order to devel effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem         Meaning of research problem, Sources of research problem, Criteria Characted	e:
<ul> <li>2. Understand the steps followed in research</li> <li>3. Analyze the information related to research</li> <li>4. Understand the concepts, procedure of IPR.</li> <li>5. Understand the concepts, procedure of Patent Rights</li> <li>Course Outcomes: On completion of the course, students will be able to–</li> <li>CO1 Develop understanding on objectives of doing research and resear process.</li> <li>CO2 Apply the subject knowledge in formulating a research problem</li> <li>CO3 Understand the different steps involved in research in order to develop fective report writing skill</li> <li>CO4 Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects</li> <li>CO5 To enable the students to keep their IP rights alive.</li> <li>CO4 Int I Research problem, Sources of research problem, Criteria Character</li> </ul>	ehensive Ks
Course Outcomes         CO1       Develop understanding on objectives of doing research and resear process.         CO2       Apply the subject knowledge in formulating a research problem         CO3       Understand the different steps involved in research in order to devel effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem, Sources of research problem, Criteria Character	
process.         CO2       Apply the subject knowledge in formulating a research problem         CO3       Understand the different steps involved in research in order to devel effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem       8         Meaning of research problem, Sources of research problem, Criteria Character       8	Bloom's Level
CO3       Understand the different steps involved in research in order to devel effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem       8         Meaning of research problem, Sources of research problem, Criteria Character       8	ch 2
effective report writing skill         CO4       Disseminate knowledge on IPR, patents, patent regime in India a abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         CO1       To enable the students to keep their IP rights alive.         CO1       Research problem         Meaning       of research problem, Sources of research problem, Criteria Character	3
abroad and registration aspects         CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem       8         Meaning of research problem, Sources of research problem, Criteria Character	
CO5       To enable the students to keep their IP rights alive.         COURSE CONTENTS         Unit I       Research problem       8         Meaning       of       research problem, Sources of research problem, Criteria Character	nd 2
Unit IResearch problem8Meaningof research problem, Sources of research problem, Criteria Character	3
Meaning of research problem, Sources of research problem, Criteria Characte	
	CO1, CO2, CO3
research prosteni, Erisis in selecting a research prosteni, seope and objectives of r	e
Unit IISteps in Research8	C01,C02
Steps in Research: Identification, selection and formulation of research problem- R	-
Research design- Formulation of hypothesis- Review of literature. Definition, Neco of defining research problem, Formulation of research problem.	ssity and technique
Unit IIIEffective technical writing8	CO2, CO3, CO4 CO5

Format of research proposal, Plagiarism.

		1	2	
	<b>Basics of Intellectual Property Rights</b>		8	CO4, CO5
Introduc	tion to the concepts, Property and Intellectual	Property,	objective	and Importance of
Intellectu	al Property Rights, Patents, Process of Patenting a	and Develo	pment: tec	chnological research
innovatio	on patenting and development, Procedure for grants	of patent.	Internation	nal Scenario: WIPO
TRIPs, P	Patenting under PCT.			
Unit V	Detent System and New developments in IDD	1	8	CO4 CO5
Unit v	Patent System and New developments in IPR		0	CO4, CO5
Scope of	f Patent Rights, Licensing and transfer of technology	ogy, Patent	informati	on and databases,
Adminis	tration of Patent System, New developments in IPR	; IPR of Bi	ological S	ystems, Computer
Software	e etc.			
	Text Books			
1. C	. R. Kothari, Gaurav Garg, Research Methodology M	lethods and	l Techniqu	es,
	ew Age International publishers,.			
2. R	anjit Kumar, Research Methodology: A Step-by-Step	o Guide for	Beginners	, 2nd Edition,
S	AGE, 2005			
	Reference Books			
1. Cr	eswell, John W. Research design: Qualitative, quar	ntitative, ai	nd mixed	methods approaches
Sa	ge publications, 2013.			
2. Sir	ngh, Y. K. (2006). Fundamental of Research Meth	odology a	nd Statistic	cs. New Delhi. New
Int	ernational (P) Limited, Publishers.			
3. Be	st and Kahn, Research Methodology, PHI Limited			
4. Mi	les, Huberman, A. M., Saldana J. Qualitative data ition, Sage Publication.	analysis: A	A methods	sourcebook – Thire

5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, Intellectual Property in New Technological Age, Aspen Law & Business.

	Strength of CO-PO/PSO Mapping						
СО		РО					
	1	2	3	4	5	6	
CO 1	3	1	3	1	1	-	
CO 2	3	1	3	1	1	-	
CO 3	3	1	3	1	1	-	
CO 4	3	1	3	1	1	_	
CO 5	3	1	3	1	1	-	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	<b>Components for Continuous Comprehensive Evaluation</b>	Marks Alloted			
1	Assignments	10			
2	Draft patent writing	10			



		M.Tech Pattern 2022 Semest CIV225106: Lab Prac			
<b>Teaching Scl</b>	Feaching Scheme:Credit Scheme:Examination Scheme:				
Practical : 04	4 hrs/week	TW: 25Marks OR: 25Marks			
Prerequisite	Courses, if any: Testing	g of concrete ingredients	s, basics of MATLA	В	
2. To demo	ctives: estand and apply MATL nstrate the experimental cterize the dynamic prop	techniques in recent de	1		
<b>Course Outc</b>	omes: On completion of	f the course, students w	ill be able to-		
		<b>Course Outcomes</b>		Bloom's Level	
CO1	Apply MATLAB for so	3			
CO2	Perform mix design of	3			
CO3	CO3 Assess the properties of fresh and hardened concrete.				
CO4	CO4 Perform experiments on shake table.				
		COURSE CONTEN	ITS		
I Ana	alysis of Systems		2	CO1	
Dynamic ana software.	lysis of single and m	ulti-degree-of-freedom	systems using MA	ATLAB programs /	
II Mix	x Design		2	CO2	
	ance/High strength/Self	compacting concrete			
III Pro	perties of Fresh Concr	ete	2	CO3	
Testing of Pro pumpable con	operties of fresh Concret crete )	e (High performance/Hi	igh strength/Self con	npacting concrete/	
IV Pro	IVProperties of hardened Concrete2				
Testing of ha concrete	rdened Concrete (High	performance/High stre	ength/Self compactin	ng concrete/ pumpable	
V Stru	ictural Dynamics: Exp	eriments	2	CO4	
Determine the harmonic base	e natural frequencies and e excitations	the mode shapes for va	arious shear building	frames subjected to	
		Text Books			

- 1. A.P.Remideos, Concrete Mix Design, Himalaya Publishing House
- 2. P. Kumar Metha, Concrete, Gujrat Ambuja.

### **Reference Books**

- 1. M.S. Shetty, Concrete Technology, S. Chand Publications.
- 2. A R Santhakumar, Concrete Technology, Oxford University Press.
- 3. M. L. Gambhir, Concrete technology, Tata Mcgraw Hill Publications.
- 4. P. N. Balguru and P. N. Shah, Fiber Reinforced Cement Composite.

		Strength of CO-PO Mapping					
CO		РО					
	1	1 2 3 4 5 6					
CO 1	3	3	3	3	2	1	
CO 2	3	2	3	3	3	2	
CO 3	3	2	3	3	3	3	
<b>CO 4</b>	2	2	3	2	2	2	

	List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	CO Mapped		
1	Assignment I	1		
2	Assignment II	2		
3	Assignment III	3		
4	Assignment IV	3		
5	Assignment V	4		
	Guidelines for Term work Assessment	1		
. Assessr	nent will be based on each unit.			
2. Each as	signment will be of 5 marks.			



		M.Tech Pattern 2022 Semester 5107: Theory of Plates		
Teaching Sc	heme:	Credit Scheme:	Examination Scheme:	
Theory : 03	hrs/week	03	InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks	
Prerequisite	Courses, if any: Engine	ering Mathematics, Strer		
-	asticity and Plasticity)	0		
Course Obje	ctives:			
<ol> <li>To conve</li> <li>To teach</li> <li>To explain</li> <li>To furnis</li> </ol>	cnowledge of classical ar ey knowledge about Levy the analysis of circular p in the concepts of shells sh the knowledge about c comes: On completion of	y's and Reissener – Mind plates under axi-symmetr and shell of revolution. pircular cylindrical shells	ic loading.	
		Course Outcomes		Bloom's Level
~~ (				
CO1	theories related to plates			1
CO2	-	ature relations of plates a		2
CO3	Learn to analyze circula	ar plates for different load	ding conditions.	3
CO4	Evaluate stress displace in plates and shells.	ement relations and strain	n displacement relations	3
CO5	Learn to formulate gov theory in plates and she	verning differential equa lls.	tion and study bending	3
	· · · · ·	COURSE CONTENT	ſS	
Unit I Cla	ssical plate theory, Nav	vier's plate theory	8	CO1, CO2, CO3
assumptions, Cartesian co-o	Thin and thick plates, sn moment curvature rel ordinates, various bound solution for plates with atch load.	ations, stress resultants lary conditions, pure ber	s, governing differentianding of plates. Analysis	al equation in of rectangular
Unit II Lev	vy's method, Reissener	– Mindlin theory	8	CO1,CO2, CO4
Levy's Metho approach for s	od: Distributed load and l simple cases in rectangul y, moment curvature rela	ine load, plates under dis ar plates. Introduction to	stributed edge moments.	Raleigh- Ritz ries, Reissener -

Unit III Circular Plates	8	CO1, CO2, CO3
Circular Plates: Analysis of circular plates under axi-symmetric	c loading, moment	curvature relations,
governing differential equation in polar co-ordinates. Simply su	upported and fixed	edges, distributed
oad, ring load, a plate with a central hole.		
Unit IV Introduction to Shells	8	CO3, CO4
Introduction: Classification of shells on geometry, thin shell	theory, equations	to shell surfaces, stres
resultants, stress- displacement relations, compatibility and eq	uilibrium equatior	ns. Shells of revolution
Membrane theory, equilibrium equations, strain displac	ement relations,	boundary conditions
cylindrical, conical and spherical shells.		
Unit V Circular Cylindrical Shell	8	CO4, CO5
Circular cylindrical shells: Membrane theory: Equilibrium ec	-	-
boundary conditions. Bending Theory: Equilibrium equation, s	-	• •
differential equation, solution for a simply supported cylindri	ical shell, various	boundary conditions
and application to pipes and pressure vessels.		
Text Books		
1. Chandrashekhara K., Analysis of Concrete Shells, New	Age International	Edition
2. Chandrashekhara K., Analysis of Plates, New Age Inter	national Edition	
Reference Books		
1. S. Timoshenko and W. Krieger, Theory of Plates and Sl	nells, Mc Graw Hil	1.
2 Angel C. Hennel, Stragges in Distag and Shells, Mc Crow	v Hill	
2. Ansel C. Ugural, Stresses in Plates and Shells, Mc Graw		

		Strength of CO-PO/PSO Mapping							
СО		РО							
	1	1 2 3 4 5 6							
CO 1	3	1	3	1	1	-			
CO 2	3	1	3	1	1	-			
CO 3	3	1	3	1	1	-			
CO 4	3	1	3	1	1	-			
CO 5	3	1	3	1	1	-			

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Sr. No.       Components for Continuous Comprehensive Evaluation       Marks         Alloted					
1	Assignment	10				
2	Mini Project	10				



	CIV	M.Tech Pattern 2022 Semeste 225108: Finite Elemen			
Teaching So	cheme:	Credit Scheme:	Examination Scheme:		
Theory : 03 hrs/week		03 InSem Exam: 20Mark Continuous Comprehe Evaluation: 20Marks EndSem Exam: 60Ma		ensive	
Prerequisite	Courses, if any: Engine	ering Mathematics-Mat	ix operations, Structural	Analysis	
Course Obje	ectives:				
•	basic principles of finite	element analysis procee	lure		
2. To learn	the theory and character	istics of finite elements	that are used in the analy	sis of engineering	
<ul><li>structure</li><li>3. To deve method.</li></ul>	lop the knowledge and sk	cills needed to analyse st	ructural problems by usi	ng finite element	
<b>Course Out</b>	comes: On completion of	f the course, students wi	ll be able to-		
		<b>Course Outcomes</b>		Bloom's Level	
CO1	Demonstrate effect of t	ype of element on the ac	curacy of the solution.	2	
CO2	Solve structural engined	ering problems using 1D	, 2D and 3D elements.	2	
CO3	Write shape functions of 1D, 2D and 3D elements		3		
CO4	Differentiate plate elements and shell elements as per its application		as per its application.	2	
CO5	Construct stiffness mat	rix for isoparametric and	axisymmetric elements.	4	
		COURSE CONTEN	TS	I	
Unit I Int	troduction		8	CO1, CO2	
	os of finite Element Me	ethod, applications and	-	,	
discretisation triangle. Con spring assem	n of continuum, node m nvergence criteria, form blage. Element stiffness s by using direct stiffness	umbering, use of polyr ulation of stiffness ma matrix for truss and bea	omial displacement fur trix, boundary conditio	nction, Pascal's ns, analysis of	
Unit II Fo	rmulation		8	CO1,CO2	
Background Variational n minimum po	on variational calculus, C nethods of approximation tential energy, variationants, Strong and Weak form	, Rayleigh-Ritz method, l approach for formulation	Variational theorem, pri-	es methods, inciple of	
	vo dimensional elements		8	CO2, CO3	
Shape function	ional elements in plane st ons in Cartesian and natu elements. Higher order el ness.	ral coordinate systems, s	hape functions for one, t	wo and three	

Unit IV Concept of Various Elements	8	CO2, CO5		
Concept of isoparametric elements, Jacobian matrix, formu	ulation of two dimension	ional quadrilateral		
isoparametric element in plane elasticity problem, 3-D isoparametric elements, Axisymmetric elements				
in axisymmetric problems, stress strain relations, triangular and	d Quadrilateral elements	S.		
Unit V Thin Plate Bending Elements	8	CO4, CO5		
Thin Plate bending elements, various triangular and rectang	gular elements, ACM (	Adini, Clough,		
Melosh) and BFS (Bogner, Fox, Schimdt) elements. Conf	orming and nonconfor	ming elements,		
concept of four noded and eight nodded isoparametric eler	ments, Mindlin's hypo	thesis for plate		
bending element, Flat and curved shell element, elements for c	ylindered shells			
Text Books				
1. Logan, D.L., 'A First Course in Finite Element Method	', Cengage Learning.			
2. Rao, S. S., 'The Finite Element Method in Engineering	'Elsevier Publication.			
Reference Books				
1. Buchanan, G. R., 'Finite Element Analysis', Schaum'	s outlines, Tata McGra	w Hill Publishing		
Co. Ltd.				
2. Zienkiewicz & Taylor, 'The Finite Element Method',	Vol. I & II – McGraw	Hill International		
Edition				
3 Bhavikatti S S 'Finite Element Analysis' New Age	International Publisher	s Delhi		

- 3. Bhavikatti, S. S., 'Finite Element Analysis', New Age International Publishers, Delhi
- 4. Reddy, J. N., 'An Introduction to the finite element method', Tata McGraw Hill Publishing Co. Ltd.

со		Strength of CO-PO Mapping PO							
	1	1 2 3 4 5 6							
CO 1	3	2	3	3	3	-			
CO 2	3	2	3	3	3	-			
CO 3	3	2	3	3	3	-			
CO 4	3	2	3	3	3	-			
CO 5	3	2	3	3	3	-			

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Sr. No.       Components for Continuous Comprehensive Evaluation       Ma         All       All					
1	Assignment	10				
2	Mini Project	10				



		M.Tech Pattern 2022 Semester Advanced Design of Co			
Teaching	Scheme:	Credit Scheme:	<b>Examination Scheme:</b>		
Theory : (	03 hrs/week	03	InSem Exam: 20Marks Continuous Comprehensive Evaluation: 20Marks EndSem Exam: 60Marks		
_	ite Courses, if any: Basic N	Iathematics, Concrete Te	echnology, Reinforceme	ent Cement	
Concrete S	tructures				
<ol> <li>To tea beams</li> <li>To ex</li> <li>To ed</li> </ol>	ant knowledge of yield line ach the analysis and design of	of reinforced concrete gr on of elevated service res of advanced foundation	ervoir. s.		
Course O	utcomes: On completion of	the course, students wil	l be able to–		
		<b>Course Outcomes</b>		Bloom's Level	
CO1	CO1 Apply relevant IS provisions to ensure safety and serviceability of structures.			3	
CO2	Predict the behavior of loads.	structural elements unde	er working and ultimate	5	
CO3	Apply the principles, p concrete structures.	procedures for the desig	n of special reinforced	3	
CO4	Prepare drawings of stru	ctural detailing.		6	
		COURSE CONTENT	ГS		
Unit I	Yield line theory		8	CO1, CO2, CO3	
Yield line	theory for analysis of slabs,	various patterns of yield	l lines, assumptions in y	ield line theory,	
various edg	tics of yield lines. Design ge conditions using yield lir cally reinforced slabs.				
Unit II	Grid Slabs and Flat Slabs		8	CO1, CO2, CO4	
Flat slabs, design moi	offered slabs, general featur types, design methods, colu ment, distribution of momer te and end panel by direct n	mn and middle strip, pro	portioning of flat slab e		
Unit III	Reinforced Concrete Bea		8	CO1, CO2, CO3	
Design of 1	reinforced concrete deep be	ams, design of beams cu	rved in plan.		

Unit IV	Elevated service reservoir	8	CO3, CO4			
Elevated service reservoir: Rectangular and circular type only flat bottom, Design of staging for wind and earthquake forces.						
Unit V	Foundations	8	CO3, CO5			
Design of	raft foundations, pile foundations, single pile, group	of piles, Pile cap.				
Combined footing.	Combined footing – Slab type rectangular combined footing, slab-beam type rectangular combined footing.					
	Text Books					
1.	Shah, V. L. and Karve, S. R., 'Limit State The	ory & Design of	Reinforced Concrete',			
	Structures Publications, Pune.					
2.	Bhavikatti S. S., 'Advance R. C. C. Design', New A	ge International Pu	ıblishers			
	<b>Reference Books</b>					
1.	Park R. and Paulay T., 'Reinforced Concrete Structu	ures', John Wiley &	z Sons.			
-	2. Purushothaman P., 'Reinforced Concrete Structural Elements', Tata McGraw-Hill, 1984					
2.	Purushothaman P., 'Reinforced Concrete Structural	Elements', Tata M	cGraw-Hill, 1984			

4. Varghese P. C., 'Advanced Reinforced Concrete Design', Prentice-Hall of India.

		Strength of CO-PO/PSO Mapping							
СО		PO							
	1	1 2 3 4 5 6							
CO 1	3	2	3	3	1	1			
CO 2	3	2	3	3	1	1			
CO 3	3	2	3	3	1	1			
CO 4	3	2	3	3	1	1			
CO 5	3	2	3	3	1	1			

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted		
1	Assignment	10		
2	Mini Project	10		



		M.Tech Pattern 2022 Semeste sis & Design of Eartho	r: II Juake Resistant Structu	res
Teaching	Scheme:	Credit Scheme:	Examination Scheme:	
Theory :	03 hrs/week	03 InSem Exam: 20Mar Continuous Compreh Evaluation: 20Marks EndSem Exam: 60Marks		ensive
	ite Courses, if any: Engine	ering Mechanics, Struc	tural Analysis, Dynamic	es of structure,
	RCC structure. bjectives:			
<ol> <li>To m</li> <li>To st desig</li> <li>To ex</li> </ol>	ake students to learn basic sound the effect of irregularities	s on behavior of structu	re & philosophy of ea	arthquake resistant nt structures using
Course C	Outcomes: On completion of	the course, students wi	ll be able to-	
		<b>Course Outcomes</b>		Bloom's Level
CO1	Describe basic seismolo	Describe basic seismology and earthquake design philosophy.		
CO2	Apply the basic er Engineering.	gineering concepts	related to earthquake	3
CO3		s for various structures	s as per relevant Indian	5
CO4	Design the structures fo	r seismic resistance as p	er Indian standards.	6
CO5	Design ductile detailing	in the structural member	ers.	6
		COURSE CONTEN	TS	
Unit I	Basic seismology and earth	quake effects	8	CO1, CO2
of seismic liquefactio	of earthquakes, causes of e waves and its composition on and its effects on structur pectra, tripartite plot, soil structur	n, measurement of ear es, peak ground acceler	thquakes seismic effect	s on structures
Unit II	Earthquake design philo	sophy	8	CO1, CO2
earthquak	rregularities and architectura e resistant design, maximum Texibility and ductility, P-De	considered earthquake,		1 1 1
Unit III	Methods of analysis		8	CO1, CO2, CO3
-	t linear static analysis (with alysis, static pushover analys isions		•	

Unit IV	Design of RC members	8	CO3, CO4, CO5
	binations, concept of strong column and weak beau to beam-column joints as per IS 1893 and IS13920.	m design, design and o	letailing of beam,
Unit V	Design of Shear wall & Analysis of elevated water tanks	8	CO3, CO4, CO5

a) Design of shear wall: types of lateral load resisting systems, (types of shear walls) computation of design lateral forces on RC shear wall, design of RC shear wall

b) Analysis of elevated water tanks: Modelling and analysis of overhead water tanks, hydrostatic and hydrodynamic effects, earthquake resistant provisions.

### Text Books

- Pankaj Agarwal, Manish Shrikhande, Earthquake resistant design of structures, PHI India 1.
- S.K. Duggal, Earthquake Resistant Design of Structures, Oxford University Press. 2.

#### **Reference Books**

- 1. Minoru Wakabayashi, Design of Earthquake Resistant Buildings, McGraw Hill Publications.
- 2. T. Paulay and M J N Priestley, Seismic Design of Reinforced Concrete and Masonry Buildings,

John Wiley and Sons.

- 3. D. J. Dowrick, Earthquake Resistant Design and Risk, Reduction Willey India, 2011
- 4. J A Blume, Design of multi-story RC Buildings for Earthquake Motions, Newmark and Coming, Portland Cement Association.

		Strength of CO-PO Mapping						
СО		РО						
	1	1 2 3 4 5 6						
CO 1	3	2	1	1	1	1		
CO 2	3	2	1	1	1	1		
CO 3	2	2 2 3 3 2 2						
CO 4	2	2	3	3	3	3		
CO 5	2	2	3	3	3	3		

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	<b>Components for Continuous Comprehensive Evaluation</b>	Marks Alloted			
1	Assignment	10			
2	Mini Project	10			



			M.Tech		
			Pattern 2022 Semeste		
Tasahina	- Cal		-B: Structural Design	of Steel Bridges Examination Scheme:	
Teaching	g Scr	ieme:	Credit Scheme:	Examination Scheme:	
Theory :	03 k	nrs/week	03	InSem Exam: 20Marl	
				Continuous Compreh Evaluation: 20Marks	
	Evaluation: 20Marks EndSem Exam: 60Ma				
Prereauis	site (	Courses, if any: Engine	ering Mechanics, Struct	ural Analysis, Dynamics	
_		C structure.			
Course O	bjec	tives:			
			6	usage of respective IS c	odes
	-	and analyze plate girde	-		
		truss design with stand		11 • 1	
		cable supported steel b			ata:1
				ing each component in d	etall
Course (	<b>)</b> utc	omes: On completion of	the course, students will	ll be able to-	
			Course Outcomes		
C01		Categorize different components of bridges and quote the respective standard specifications			2
CO2		Interpret the box section and its types devising the proportioning limits.			2
CO3		Analyze and Design be support steel bridges.	am, plate girder bridges	, truss bridges and cable	4
			COURSE CONTEN	TS	
Unit I	Intr	oduction		8	CO1, CO3
ntroducti	on t	o bridge engineering,	classification and com	ponents of bridges, lag	yout, planning,
tructural	form	ns of bridge decks, be	am and slab decks, cel	llular decks, standard s	pecification for
oridges, I	RC	loadings for road bridg	es, loading standards fo	or railway bridges, anal	ysis of through
ype and c	leck	type bridges			
Unit II				8	CO1, CO3
	Bea				
			1 0 0	nain plate girder, shape l	
		-	kling, web buckling, she	ear moment interaction, t	tatigue effect,
Lateral br Unit III	acinį	5		8	CO1, CO3
	Tru	ss Bridges		o	CO1, CO3
Design of	trus	s bridges, optimum dept	h of truss girder, design	of compression chord m	ember, design of
	ord	member, design of verti	cal and diagonal membe	r, Lateral bracing	1
Unit IV		le Supported Steel Bri	8	8	CO1, CO3
-			dges, design of steel b	box girder, design of s	uspension cable
Suspensio	n br	idges.			

Unit V Box	section flexural members	8	CO1, CO2	
	exural members, diaphragm requirements at supp		eral bracing in tube	
girder, horizontally curved boxes, single boxes, closed boxes, proportioning limits				
Text Books				
1. Der	metrios E. T., Design, Rehabilitation and Mai	intenance of Mode	rn Highway Bridges,	
Mc	cGraw-Hill Publishers.			
2. Ran	mchandra, 'Design of Steel Structures 2', Scienti	fic Publications		
	<b>Reference Books</b>			
1. Owens.	s. G. W., Knowles. P. R., Dowling. P. J., Steel D	esigners Manual, Fi	ifth edition, Blackwell	
Scienti	ific Publications.			
2. Chatter	rjee S., The Design of Modern Steel Bridges, Firs	st edition, BSP Profe	essional books.	

- 3. Victor. D. J. Essentials of Bridge Engineering, Oxford and IBH Publishers.
- 4. T. R. Jagadeesh and M. A. Jayaram, Design of Bridge Structures, Prentice-Hall of India

		Strength of CO-PO Mapping					
СО		РО					
	1	1 2 3 4 5 6					
CO 1	3	1	2	2	2		
CO 2	3	1	3	3	2	1	
CO 3	3	2	3	3	2	1	

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Mark Allote					
1	Assignment	10				
2	Mini Project	10				



		M.Tech Pattern 2022 Semest 225110-C: Structural I		
Teaching Sc		Credit Scheme:	Examination Scheme:	
Theory:03		03 InSem Exam: 20Mar Continuous Compreh Evaluation: 20Marks EndSem Exam: 60Ma		ensive
Prerequisite	Courses, if any: Design	of structures		
<ol> <li>To stu</li> <li>To stu</li> <li>To stu</li> <li>To stu</li> <li>To stu</li> </ol>	idy design & development ady the probability Conce ady the different probability ady the principles of reliand ady the concepts of system	ept lity distributions bility & reliability anal n reliability	ysis	
Course Outo	comes: On completion of		111 be able to-	
		<b>Course Outcomes</b>		Bloom's Level
CO1	CO1 Apply knowledge of design and development of		of problem solving skills	3
CO2 Understand the probability Concept			2	
CO3	Summarize and apply t	he probability distribut	ions for given data	2
CO4	Express the principles of	f reliability		3
CO5	Integrate the concept of	System reliability		5
		COURSE CONTEN	ITS	
Unit I Pre	eliminary Data Analys	is	8	CO1
Graphical rep	presentation-Histogram,	frequency polygon, Me	asures of central tendenc	y- grouped and
ungrouped da	ata, measures of disper-	sion, measures of asyn	mmetry. Curve fitting an	nd Correlation:
Fitting a stra	aight line, curve of the f	ormy = nd, and parabol	a, Coefficient of correlati	on
Unit II Pro	bability Concepts		8	CO1, CO2
Random eve	ents - Sample space and	ition rule, multiplicatio	and event space, Measure on rule, conditional probal om and Baye's theorem.	1 .
Unit III	ndom variables			CO2, CO3
theorem. Prob		crete distributions- Bin	nematical expectation, Ch omial and poison distribu	
Unit IV	liability Analysis		8	CO4, CO5

Measures of reliability-factor of safety, safety margin, reliability index, performance function and limiting state. Reliability Methods-First Order Second Moment Method (FOSM), Point Estimate Method (PEM), and Advanced First Order Second Moment Method (Hasofer-Lind's method)

Unit V System reliability	8	CO4, CO5
------------------------------	---	----------

Influence of correlation coefficient, redundant and non-redundant systems- series, parallel and combined systems, Uncertainty in reliability assessments- Confidence limits, Bayesian revision of reliability. Simulation Techniques: Monte Carlo simulation- Statistical experiments, sample size and accuracy, Generation of random numbers- random numbers with standard uniform distribution, continuous random variables, discrete randomvariables.

#### **Text Books**

- 1. Ranganathan, R., "Structural Reliability Analysis and design"- Jaicob Publishing house, Mumbai, India.
- 2. Achintya Haldar and Sankaran Mahadevan, "Probability, Reliability and Statistical methods in Engineering design"- John Wiley and Sons. Inc.

### **Reference Books**

- 1. Aug, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and design"- Volume -I, John Wiley and sons, Inc, New York.
- 2. Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineeringplanning
- 3. and design"-Volume -II, John Wiley and sons, Inc, New York.
- 4. Milton, E. Harr (1987). "Reliability based design in civil engineering"- Mc Graw Hill book Co.

		Strength of CO-PO Mapping						
CO		РО						
	1	1 2 3 4 5 6						
CO 1	3	2	1	1	2	1		
CO 2	3	2	1	1	2	1		
CO 3	2	2	3	1	2	1		
CO 4	2	1	3	3	3	1		
CO 5	2	1	3	3	3	1		

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Alloted		
1	Assignment	10		
2	Mini Project	10		



			M.Tech Pattern 2022 Semest CIV225111: Lab Prac			
Teachi	Teaching Scheme:Credit Scheme:Examination Scheme:					
Practical : 04 hrs/week 02			TW: 25Marks OR: 25Marks			
Prerequ	iisite	Courses, if any: Testing	g of concrete ingredients	s, basics of MATLAB		
2.	Γο dei Γο use	monstrate the advanced t e computer aided program	ns and softwares for an		ildings.	
Course	Outo	comes: On completion of		ill be able to–		
		Examine structural heal	Course Outcomes		Bloom's Level	
CC	)1	2				
<b>CO2</b> Model and analyze different types of problems in structural engineering using finite element programs/software packages.					3	
		using mine element pro	COURSE CONTEN			
Ι	ND	T Tests:		2	CO1	
		nmer Test lse Velocity Method			1	
		entiometer Test				
II	II Structural Audit of Building 2					
A group	of m	aximum four students sh	ould select any old exis	sting building and carry o	ut structural audit	
of a buil	lding	using NDT Tests and Vis	sual Inspections and pre	epare a report.		
III	Col	mputer implementation	of FEM procedure	2	CO2	
Pre-proc	cessin	g, solution, Post-process	ing, Use of commercial	FEA software, developm	nent of computer	
program	ns usir	ng one dimensional and t	wo dimensional elemen	nts.		
			<b>Text Books</b>			
			• •	International Publishers, 4th Edition – Elsevier Pu		
		,	Reference Books			
1. (		-		eory & Programming, 7	Tata McGraw Hil	
1		lishing Co. Ltd Ou, H.Li and Z.D. Duan, Structural Health Monitoring and Intelligent Infrastructure, Vol- 1,				
2. J	J.P. O	u, H.Li and Z.D. Duan, r and Francis Group, Lor		toring and Intelligent Inf	rastructure, Vol- 1	

International Edition

4. G. R. Buchanan, Finite Element Analysis Schaum's outlines, Tata McGraw Hill Publishing Co. Ltd.

	Strength of CO-PO Mapping							
CO		РО						
	1	2	3	4	5	6		
CO 1	3	3	3	3	3	3		
CO 2	3	2	3	3	3	2		

List of Laboratory Experiments / Assignments					
Sr. No. Laboratory Experiments / Assignments					
Assignment I	Mapped 1				
Assignment II	1				
Assignment III, IV, V	2				
Guidelines for Term work Assessment					
nt will be based on each unit.					
gnment will be of 5 marks.					
N I	Laboratory Experiments / Assignments         Assignment I         Assignment II         Assignment III, IV, V         Guidelines for Term work Assessment         ht will be based on each unit.				



<b>Teaching Sc</b>		CIV225112: Seminar	r I		
	Teaching Scheme:Credit Scheme:Examination Scheme:				
Practical : 0	4 hrs/week	02	TW: 25Marks OR: 25Marks		
-	<b>Courses, if any:</b> Structusign of structure, knowled			echanics,	
<ol> <li>6. Identify a</li> <li>7. Demonst project.</li> </ol>	structural engineering pra appropriate techniques to trate application of engin	analyze complex struct eering and management	ural systems principles through effici	ent handling of	
Course Outo	comes: On completion of		ll be able to–		
	Course Outcomes			Bloom's Level	
CO1	Select topic of own cho semester.	1			
CO2	Identify an engineering solve it.	2			
CO3	Review and tabulate th	3			
CO4	CO4 Demonstrate Analysis and design of the project by application of engineering and management principles				
CO5					
		COURSE CONTEN	ГS		
Unit I Toj	pic selection and introd	uction to topic	4	CO1	
	hall be on state of the a athematics, Structural Dy tion of topic	-		•	
Unit II Pro	Unit II Problem formation 4				
The student h	as to state problem state	ment of the topic			
Unit III Lite	erature survey		12	CO3	
	as to complete literature	•	the topic		
	alysis and design of the	1 0		CO4	
	as to demonstrated work	by doing analytical and	-	-	
Unit V Ser	ninar report		8	CO5	

#### **Text Books**

1. Borden, Iain and Katerina Ruedi Ray. The Dissertation: A Guide for Architecture Students. Third Edition. 2014.

### **Reference Books**

- 1. Turabian, Kate L. A manual for writers of term papers theses, and dissertations. 7th ed., 2007.
- John Bowden, Writing A Report, 9th Edition: How to Prepare, Write & Present Really Effective Reports, June 2011.

		Streng	th of CO-P	O/PSO M	apping			
СО		РО						
	1	2	3	4	5	6		
CO 1	3	1	3	3	3	3		
CO 2	3	1	3	3	3	3		
CO 3	3	1	3	2	3	2		
CO 4	3	1	3	3	3	3		
CO 5	3	3	3	3	3	3		

### **Guidelines for Term work Assessment**

Review I- 50 marks, Review-II- 50 marks, Final report – 50 Marks. Total of 150 marks will be converted to 25 marks.

			F. Y. M.Tech attern 2022 Semester: 5113: Computer Aided		
Teaching Scheme:         Credit Scheme:         Examination Scheme					eme:
Practical : 04 hrs/week		02	Continuous Comprehensive Evaluation: 25Marks OR: 25Marks		
Prerequis	site Co	urses, if any: Enginee	ring Mathematics-Limits	s, Differentiations, Ir	ntegrations.
<ol> <li>To lea</li> <li>To ed</li> </ol>	derstan arn anal ify kno	d fundamental spread lysis and design using wledge using MATLA	programming AB		
Course O	utcom	es: On completion of t	he course, students will	be able to–	-
			<b>Course Outcomes</b>		Bloom's Level
CO1 Understand the basics of			of spreadsheet, program	ming and MATLAB	8 2
CO2 Develop computer program			ograms using a language	2	
CO3 Apply MATLAB for solving engineering probl			lems	3	
			COURSE CONTENTS	5	
Unit I		ysis and Design of St adsheet	ructures using	8	CO1
			t functions as per requires and design of different		
Unit II		ysis and Design of St ramming	ructures using	8	CO2, CO3
	constan	ts, variables, differen	t functions as per requise and design of different		
<b>Unit III</b>	Basi	cs of MATLAB		8	CO2, CO3
			omputing, basic mathema s, relational and logical o		ys and Array
Unit IV	MAT	<b>FLAB Functions and</b>	Operations	8	CO2, CO3
			ons, user defined funct c expressions and algebr		
Unit V	Com	puter Implementatio	n	8	CO2, CO3
Developme	ent of s	imple programs. Appl	ication to engineering pr	roblems	

1. Stephen Chapman: MATLAB for Engineers: Thompson Publications

## **Reference books**

1. Steven C Chapra: Applied Numerical Methods with MATLAB: TATA McGRAW-HILL

		Stre	ngth of CC	О-РО Мар	ping				
СО		РО							
	1	2	3	4	5	6			
CO 1	3	1	3	3	3	2			
CO 2	3	1	3	3	3	2			
CO 3	3	1	3	3	3	2			

Sr. No.	Laboratory Experiments / Assignments				
1	Assignment I- Analysis and Design of RCC element using Spreadsheet	1			
2	Assignment II- Analysis and Design of element of steel structure using Spreadsheet	1			
3	Assignment III- Analysis and Design of Structural elements by using Programming language	2			
4	Assignment IV- Programming in Matlab	2, 3			
5	Assignment V- Programming in Matlab	2, 3			
	Guidelines for Term work Assessment				
. Assess	ment will be based on each unit.				