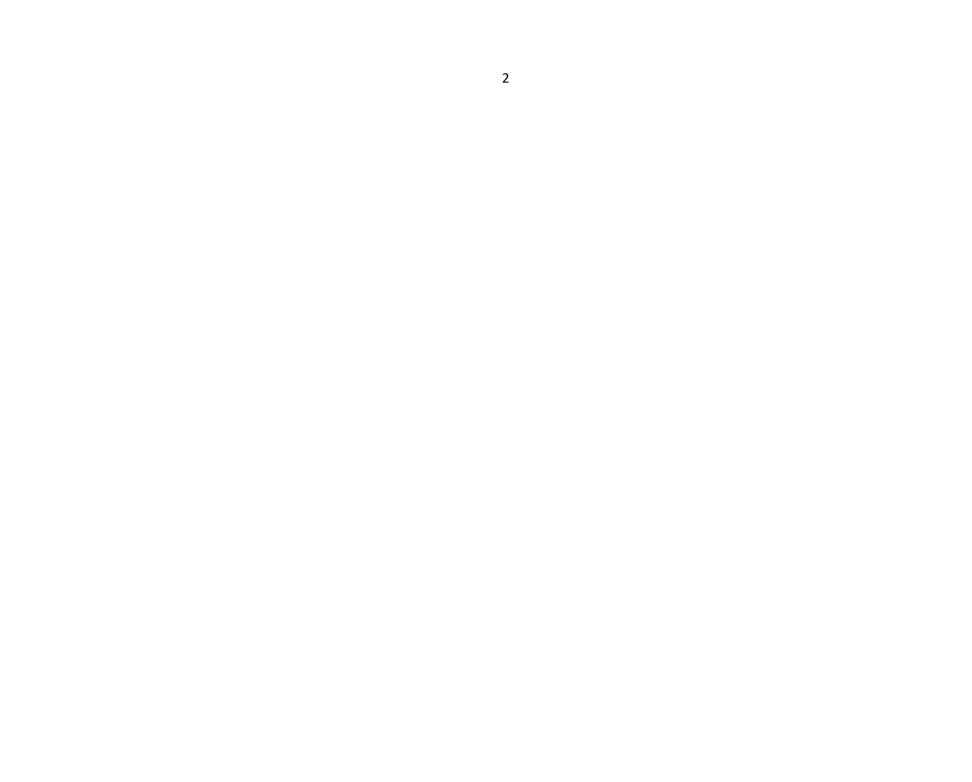


K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Pattern of Course Structure: Semester – III S.Y.B.Tech Chemical Engineering

Course Code	Course Type	Title of Course		aching cheme		Evaluation Scheme and Marks					Credits						
			Hr	s./week	2												
			TH	TU	PR	In	End	CCE	TU	TW	PR	OR	Total	TH	TU	PR	Total
						Sem	Sem										
SMH222201	BSC	Applied Mathematics III	3	1	-	20	60	20	25		-	-	125	3	1	-	4
CHE222002	DCC	Chemistry I	3	-	-	20	60	20			-	-	100	3	-	-	3
CHE222003	DCC	Fluid Mechanics	3	-	-	20	60	20			-	-	100	3	-	-	3
CHE222004	ESC	Engineering Materials	3	-	-	20	60	20			-	-	100	3	-	-	3
CHE222005	DCC	Process Calculations	3	-	-	20	60	20			-	-	100	3	-	-	3
CHE222006	LHSM	Organizational Behavior	1	-	-	-	-	-		25	-	-	25	1*	-	-	1
CHE222007	DCC	Chemistry I Lab	-	-	4	-	-	-		25	50	-	75	-	-	2	2
CHE222008	DCC	Fluid Mechanics Lab	-	-	2	-	-	-		25		25	50	-	-	1	1
CHE222009	ESC	Engineering Materials Lab	-	-	2	-	-	-		25		25	50	-	-	1	1
CHE222010	PSI	Skill Development Course	-	-	2	-	-	-		25#	-	-	25	-	-	1	1
		Total	16	1	10	100	300	100	25	125	50	50	750	16	1	5	22

Assessment of 25 marks will be done considering consistent progress of work throughout the semester Credit for 'PR' head are linked with 'TW' and 'OR' marks


*This Credit will be assessed as a TW.

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Pattern of Course Structure: Semester – IV S.Y.B.Tech Chemical Engineering

Course Code	Course Type	Title of Course	Teaching Scheme Hrs./week		Assessment Scheme of Marks				Credits							
			ТН	TU	PR	In	End	CCE	TW	PR	OR	Total	TH	TU	PR	Total
CHE222011	DCC	Chemistry II	3			Sem 20	Sem 60	20				100	3			3
CHE222011				-	-	20	00	_		-	-	100	5	-	-	3
CHE222012	DCC	Heat Transfer	3	-	-	20	60	20		-	-	100	3	-	-	3
CHE222013	DCC	Mechanical Operations	3	-	-	20	60	20		-	-	100	3	-	-	3
CHE222014	DCC	Thermodynamics	3	-	-	20	60	20		-	-	100	3	-	-	3
CHE222015	LHSM	Soft Skills	3	-	-	20	60	20		-	-	100	3	-	-	3
CHE222016	ASM	Process Simulation using DWSIM	1	-	-	-	-	-		-	-	-	-	-	-	-
CHE222017	DCC	Chemistry II Lab	-	-	4	-	-	-	25	50	-	75	-	-	2	2
CHE222018	DCC	Heat Transfer Lab	-	-	2	-	-	-	25		25	50	-	-	1	1
CHE222019	DCC	Mechanical Operations Lab	-	-	2	-	-	-	25	25		50	-	-	1	1
CHE222020	PSI	Project Based Learning	-	-	2	-	-	-	25 #	-	-	25	-	-	1	1
		Total	16	-	10	100	300	100	100	75	25	700	15	-	5	20

Assessment of 25 marks will be done considering consistent progress of work throughout the semester. Credit for 'PR' head are linked with 'TW' and 'OR' marks

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Chemical Engineering

• Summary of Credits and Total Marks for U.G. Programme:

Semester	S.Y. B.Tech Chemical Engineering					
-	Total Credits (TH+PR/OR/TU)	Total Marks				
III	22	750				
IV	20	700				
Total	42	1450				

• Description of various Courses:

Type of Course	Description	Type of Course	Description
ESC	Engineering Science Course - Workshop - Drawing- Fundamentals of different branches	DCC	Department Core Course
BSC	Basic Science Courses	DEC	Department Elective Course
LHSM	Liberal arts, Humanities, Social Sciences and Management courses	OEC	Open Elective Courses of other technical or emerging areas /Courses designed by Industry
PSI	Project work, Seminar, Internship, PBL	IMC	Induction and Mandatory Courses
NC/AC	Non Credit Courses /Audit Courses	ASM	Additional Specialized / MOOCs

Nashik

	S. Y.	B. Tech. Chemical Eng	gineering					
	Η	Pattern 2022 Semester	:: III					
	SMH222201: Applied Mathematics III							
Teaching S	Scheme:	Credit Scheme:	Examination Schen	ne:				
Theory :03 Tutorial:0	1hr/week	03 01	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks Tutorial / Termwork: 25Marks					
Course Ob	te Courses: -Higher Second	dary Mathematics						
 Find Reco &Vo Solve equat 	g different Methods. Laplace transform of function gnize nature of vector fields, u lume integrals& its application boundary value problems f tion by separation of variables atcomes: On completion of	use different vector different n or Numerical Methods.	ential operators& able to e Laplace's equation, hea	evaluate Line, surface				
	itcomes. On completion of	Course Outcomes		Bloom's Level				
CO1	Identify nature of vector find Numerical techniques, La	eld, understand basic co	oncept of L.D.E.,	2-Understanding				
CO2	Solve Laplace transform, N Line Integral and solve L.I	Numerical Methods, Dir		2-Understanding				
CO3	Apply concept of Laplace Numerical techniques in F lines, Equations of motion	luid Mechanics, Continu	uity equations, Stream	3- Apply				
CO4	Apply & Solve mass sprin Volume Integral.	g system, P.D.E. & Eva	luate Surface,	3- Apply				
CO5	Apply Concept of Differer Calculus to various applics			3 – Apply				

	COURSE CONTEN	TS	
Unit I	Linear Differential Equations with Constant Coefficient	(08hrs+ 2hrs Tutorial)	COs Mapped - CO1, CO2, CO3, CO5
method, Sh	h order with constant coefficients, Complementar ort methods, Method of variation of parameters, Ca etric simultaneous DE.		0
Unit II	Applications of Linear Differential Equations & Partial Differential Equations	(08hrs+ 2hrs Tutorial)	COs Mapped - CO3, CO4,CO5
of Vibratin	ns of LDE to chemical engineering problems and ma g string, Wave equation, one and two dimensional s, use of Fourier series. Applications of PDE to prob	Heat flow equations, n	nethod of separation
Unit III	Laplace Transform (LT) and Applications	(08hrs + 2hrs Tutorial)	COs Mapped - CO1, CO2, CO3
functions	of LT, Inverse LT, Properties & theorems, LT viz. Periodic, Unit Step, Dirac delta Unit Impulse, A al equations. Numerical Methods	pplications of LT for s	olving Linear
Unit IV	Numerical Methods	(08hrs + 2hrs Tutorial)	COs Mapped - CO1, CO2, CO3, CO5
Raphson ar Numerical	Solution of Algebraic and Transcendental equation ad Successive Approximation Methods, Solution of System of linear equations: Gauss e tion, Chelesky, Jacobi and Gauss-Seidel Methods. Vector Calculus	elimination, Gauss-Jor	don Elimination Lu
		2hrs Tutorial)	-CO1, CO2, CO4, CO5
Vector diff	erentiation, Gradient, Divergence & Curl, Direction	al derivative, Solenoid,	
	ve fields, Scalar potential, Vector identities. Line,		ntegrals, Work-done
Green's Le	mma, Gauss's Divergence theorem, Stoke's theorem	n.	
	Text Books		
2. B. S. G	amana, "Higher Engineering Mathematics", Tata Mc rewal, "Higher Engineering Mathematics", Khanna ed Engineering Mathematics,7 th Edition, by peter V. O']	Publication, Delhi.	

Reference Books

1. Erwin Kreyszig,"Advanced Engineering Mathematics", Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune

Vidyarthi Griha Prakashan, Pune.

3. Advanced Engineering Mathematics, M. D. Greenberg (Pearson Education).

Sr. No.	Guidelines for Continuous Comprehensive Evaluation of Theory Cours Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Assignments (Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks and Unit V 10 marks & 50 marks will be converted to 10 Marks)	10
2	Tests on each unit using LearniCo (Each test for 15 M and total will be converted out of 10 M)	10

	List of Tutorial Assignments					
Sr. No.	Title	CO Mapped				
1	Examples on LDE of nth order with constant coefficients.	CO1, CO2, CO3, CO5				
2	Examples on Method of variation of parameters, Cauchy's & Legendre's DE, Simultaneous DE.	CO1, CO2, CO3, CO5				
3	Examples on Applications of LDE to chemical engineering problems and mass spring system.	CO3, CO4,CO5				
4	Examples on modeling of Vibrating string, Wave equation, one and two dimensional Heat flow equations.	CO3, CO4,CO5				
5	Solve problems on matrices using MATLAB.	CO1, CO2, CO3				
6	Solve system of equations using MATLAB.	CO1, CO2, CO3				
7	Examples on Laplace transform properties and theorems.	CO1, CO2, CO3				
8	Examples on Inverse Laplace transform properties and theorems.	CO1, CO2, CO3				
9	Examples on Numerical Methods	CO1, CO2, CO3, CO5				
10	Examples on Numerical Methods	CO1, CO2, CO3, CO5				
11	Examples on Vector differentiation.	CO1, CO2,				

		CO4, CO5
12	Examples on Vector Integration.	CO1, CO2, CO4, CO5

	Guidelines for Tutorial / Termwork Assessment						
Sr. No.	Components for Tutorial / Termwork Assessment	Marks Allotted					
1	Assignment on computational software	5					
2	Tutorial (Each tutorial carries 15 marks)	15					
3	Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks)	5					

(Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Chemical Engineering

Pattern 2022 Semester: III

CHE222002: Chemistry- I

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :03 hrs/week	03	Continuous Comprehensive
		Evaluation: 20Marks
		InSem Exam: 20Marks
		EndSem Exam: 60Marks

Prerequisite Courses, if any: Knowledge of fundamental Chemistry up to XII standard and first year Engineering Chemistry.

Course Objectives:

- To impart the basic concepts of organic chemistry
- To develop understanding about concepts of organic reactions for analysis of unit
- To study the different analytical instrumentation techniques

	Course Outcomes	Bloom's Level
CO1	Analyze the type of forces and synthesize the materials based on their properties	2 Understand
CO2	Estimate the kinetics of reaction and analyze the factors controlling the rate of reactions.	3 Apply
CO3	Analyze the given chemical substance by different Instrumentation techniques.	3 Apply
CO4	Estimate the quantity of solute and synthesize the solution based on the properties.	3 Apply
CO5	Evaluate the mechanism of reactions and apply proper factor for increasing the yield of the desired product.	4 Analyze

COURSE CONTENTS Unit I Bonding and Reactivity (08hrs) CO1 ovalent Bonding Introduction to VBT, Molecular orbital theory, MO structures of s-s, s-p , p-p

Covalent Bonding- Introduction to VBT, Molecular orbital theory, MO structures of s-s, s-p, p-p overlaps, molecular orbital structure of butadiene, benzene, MO energy diagrams for diatomic molecules N_2 , O_2 , CO_2 , H_2 , CO. Aromaticity-conditions necessary for delocalization of electrons, resonance structures stability rules, resonance in benzene, phenol, aniline, benzaldehyde, nitrobenzene molecules, Inductive effect, steric effect and Resonance effect on pKa and pKb values of acids and bases.

Unit II	Reaction Dynamics & Photochemistry	(08hrs)	CO2
Kinetics:	Rate of reaction, rate constant, order of reaction, kin	netics of first and secon	d order reactions,
numerical	on above, Activated complex theory of reaction	on rates kinetics of co	omplex reactions.
Photocher	nistry: Introduction and importance, Stark-Einstein	law, photochemical rate	law, examples of
photocher	nical reactions kinetics of i) H ₂ , Cl ₂ reaction	ii) dimerisation of anth	racene. Types of
Photocher	nical Organic reactions, Laws of photochem	nistry and quantum	yields-problems,
Photosens	itized reactions.		

Unit III	v v							CO3				
Chromato	graphy:	Adsorption	and	partition	principles,	Study	of	TLC,	colun	nn,	HPLC,	Gas
Chromato	graphy a	nd their appli	ication	ns. b) Opt	ical methods	: UV, L	amb	ert-Bee	er law,	IR	spectrosc	opy-
introduction	on (FTIF	R), instrumen	tation	, applicati	ons. Flame p	ohotome	etry-	princip	ole, ins	trur	nentation	and
application	ns.											

Unit IV	Solution	(8hrs)	CO4
Solution :	-definition, solution of gas in gas, gases in liquid, Her	ry's law, the ideal solut	ion, Raoult'1s law

of ideal solution, solutions of liquids in liquids, theory of dilute solution. Colligative properties, osmosis, osmotic pressure, Colligative properties of dilute solution- lowering of vapor pressure, elevation of boiling point and thermodynamic derivation, depression in freezing point and thermodynamic derivation. Abnormal behavior of solutions of electrolytes, Van't Hoff factor. Numerical on all above.

Unit V	Reaction Mechanisms	(8hrs)	CO5
Substitutio	on at saturated carbon (SN ¹ ,SN ²) - mechanism, kin	etics, stereochemistry, fa	actors favoring it.
Electrophe	onic aromatic substitution in benzene and mono	substituted benzenes,	activating and
deactivati	ng groups, nitration, Friedel-Craft reactions, sulp	phonation, and diazotizat	tion. Nucleophilic
substitutio	on on carbonyl carbon. Addition of HX on C=	C, 1, 2Eliminations- El	mechanism, E2,

(Saytzeff, Hoffman products), factors favoring it. Rearrangements- Beckmann, Claisen, Favorskii, Sonochemical reaction

Text Books 1. Inorganic chemistry - J.D. Lee 2. Inorganic chemistry - Cotton and Wilkinson's 3. Physical chemistry - P L Soni 4. Physical Chemistry - Atkins 5. Physical Chemistry - MaronPruton 6. Instrumental methods of chemical analysis Chatwal -Anand Reference Books 1. Analytical chemistry - Skooge and West 2. Reaction mechanism - Jerry March

3. Organic Chemistry - Morrison and Boyd

4. Instrumental Methods of Analysis, H.H.Willard, L.L. Merritt and J.A. Dean & F.A Settle, CBS Publishers, 7th Edition, 1988

	Guidelines for Continuous Assessment of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignment on 1,2,3,4,Unit	10			
2	Group presentations on Unit 5	05			
3	Learnico test on each unit	05			

Nashik

	S. Y.	. B. Tech. Chemical En	gineering	
		Pattern 2022 Semeste	r: III	
		HE222003: Fluid Mec		
Teaching	Scheme:	Credit Scheme:	Examination Schem	e:
Theory :	ry :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			ks urks
Prerequisi and Chemi	i te Courses, if any: - Cours stry	ses of Engineering Math	ematics, Engineering M	echanics, Physics
clas • To occ • To	ojectives: introduce basic concepts ssification of flows. understand fluid statics, base urring through pipelines. develop relationships among dization and applications o	sic equations of fluid floong process or system	ow and applications to d	etermine losses
	Dutcomes: On completion of		-	
		Course Outcomes		Bloom's Level
CO1	Explain different fluid pro		nd flows.	1-Knowledge
CO2	Understand fluid statics measuring devices in chem		related to pressure	2-Understand
CO3	Apply basic equations of different devices.	fluid flow to determine	ne fluid flow rate by	3-Apply
CO4	Apply theorems to form 1 losses for flow of fluid thr		and determine energy	3-Apply
CO5	Understand concepts of bo of different valves and pur			3-Apply

Unit I	Introduction	(08hrs)	COs Mapped - CO1
viscome	ranches of fluid mechanics, properties of fluid, cla ters, Newton's law of viscosity, numericals, non-N the flow		uds, different types o
Unit II	Fluid Pressure and Measurement	(08hrs)	COs Mapped - CO2
	law, Hydrostatic law, concept of atmospheric, g ters, and pressure measurement by simple and differe ters		-
Unit III	Basic Equations of Fluid Flow and Flow Measuring Devices	(08hrs)	COs Mapped – CO3
venturin	uations of fluid flow: continuity equation and equation neter, orifice meter, pitot tube, rotameter, Mass flow asuring devices		
Unit IV	Fluid flow through pipelines and dimensional analysis	(08hrs)	COs Mapped – CO4
	flow through circular pipe: Hagen Poiseuille equ		-
Weisbac types of	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method	id mechanics, din	nensional homogeneity
Weisbac types of and Buck Unit V Concept layer, nu	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a flat merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals base	t plate, different types	nensional homogeneity method COs Mapped – CO5 hickness of boundary s of valves and pumps
Weisbac types of and Bucl Unit V Concept layer, nu centrifug	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a flat merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals base Text Books	t plate, different types on centrifugal p	nensional homogeneity method COS Mapped – CO5 chickness of boundary s of valves and pumps, pump
Weisbac types of and Bucl Unit V Concept layer, nu centrifug 1. M	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a flat merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals base	t plate, different types don centrifugal p cs", Standard Boo	nensional homogeneity method COs Mapped – CO5 chickness of boundary s of valves and pumps pump ok House, New Delhi.
Weisbac types of and Bucl Unit V Concept layer, nu centrifug 1. M 2. Ba 1. M	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a flav merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals based Text Books odi, L.P., Seth, S.M., "Hydraulics and Fluid Mechanic ansal, R. K., "A Textbook of Fluid Mechanics and Hy Reference Books cCabe,W. L, J. Smith, and P. Harriot, Unit Operation	t plate, different t con, different types d on centrifugal p cs", Standard Boo draulic Machines	nensional homogeneity method COS Mapped – CO5 chickness of boundary s of valves and pumps bump ok House, New Delhi. ", Laxmi Publications.
Weisbac types of and Bucl Unit V Concept layer, nu centrifug 1. M 2. Ba 1. M In	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a flat merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals base Text Books odi, L.P., Seth, S.M., "Hydraulics and Fluid Mechanic ansal, R. K., "A Textbook of Fluid Mechanics and Hy Reference Books	t plate, different t con, different types ed on centrifugal p cs", Standard Boo draulic Machines s of Chemical Eng	nensional homogeneity method COs Mapped – CO5 chickness of boundary s of valves and pumps bump ok House, New Delhi. ", Laxmi Publications.
Weisbac types of and Bucl Unit V Concept layer, nu centrifug 1. M 2. Ba 1. M In 2. No	h equation, Numericals, dimensionless numbers in flu similarities, model and prototype, dimensional analys kingham's method Boundary Layer and fluid transportation of hydrodynamic boundary layer, growth over a fla merical based on boundary layer, types of fluidization gal pump working and characteristics, numericals based Text Books odi, L.P., Seth, S.M., "Hydraulics and Fluid Mechanic ansal, R. K., "A Textbook of Fluid Mechanics and Hy Reference Books cCabe,W. L, J. Smith, and P. Harriot, Unit Operation ternational Edition, Seventh edition.	t plate, different t on, different types ed on centrifugal p cs", Standard Boo draulic Machines s of Chemical Eng	Anternational homogeneity method COS Mapped – CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10			
2	Group Presentation on Unit-5	05			
3	LearniCo Test on Each Unit	05			
	Total	20			

	S. Y.	B. Tech. Chemical Eng	ineering		
	1	Pattern 2022 Semester	: III		
	CHE	222004: Engineering N	Iaterials		
Teachin	g Scheme:	Credit Scheme:	Examination S	cheme	:
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks					s ·ks
Prerequi	site Courses, if any: - Basics	s of Physics, Chemistry, l	Engineering Math	ematic	es.
 To To To 	Objectives: b impart the basic concepts of b develop understanding select b describe the applications of Outcomes: On completion o	ction of engineering mate advance materials like n	ano materials.	opertie	s.
		Course Outcomes			Bloom's Level
CO1	State the basic concepts of n	naterial science.			1-State
CO2	Select materials based on the		applications.		2-Identify
CO3	Describe metals and their all according to their properties.		s and analyze the	m	3-Interpret
CO4	Describe and analyze nano r	naterials and their proper	ties.		3-Interpret
CO5	Identify electron microscope	and their types.			2-Identify
	·	COURSE CONTENT	S		
Unit I	Introduction		(08hrs)	COs	Mapped -CO1
Non-Meta Mechanic materials	ion to materials and their prinals: Introduction to Ceramics als: Introduction to Ceramics al Properties), and Application using ASTM methods. atments: Methods for Fabr	and Glass: Classifications. Introduction to the d	n, Properties (Phy etermination of m	ysical, nechan	Chemical, and ical properties of
Unit II	Materials Testing		(08hrs)	COs	Mapped - CO2
-	f materials, destructive and no of the atom: crystal structure		naterial properties	s defor	mation and slip

		(0.01)	00.16 1.000
Unit III	Metals and their alloys	(08hrs)	COs Mapped – CO3
ntrodu	ction to Ferrous and nonferrous alloys.		
	Alloys: Iron-Carbon Diagram, Mild Steel, Special Stee		
	rous Alloys: Brass, Aluminum Alloys, and Titanium Al	•	corrosion and preventive
	es. High- and Low-Temperature Materials, Insulators, I		00 M
Unit IV	Nano materials	(08hrs)	COs Mapped – CO4
	fication, synthesis, characterization, and application of N		
	n nano tubes, fullerites. Nano particles – silver nano par	ticles. Applicat	ions of Nano materials in
Unit V	ical Industry Experimental techniques	(08hrs)	COs Mapped – CO5
	uction to Electron Microscopes	(00113)	$\cos \text{ mapped} = \cos \theta$
Transr	of Scanning electron microscopy SEM (Basics, Principal Electron microscopy TEM (Basics, Principal Electron probe microscopes: Study of scanning tunneling microscopes)	ements, workin	lg).
Transr Scanni	nission electron microscopy TEM (Basics, Principal Ele	ements, workin	lg).
Transr Scanni ray dif	nission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction	ements, workin croscopy, atom	lg).
Transr Scanni ray dif 1.	nission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks	ements, workin croscopy, atom J.K.	ic force microscopy, X-
Transr Scanni ray dif 1.	nission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books	ements, workin croscopy, atom J.K. . Kodgire, Even	rest Publishing House
Transr Scanni ray dif 1.	nission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D	ements, workin croscopy, atom J.K. . Kodgire, Even	g). ic force microscopy, X-
Transr Scanni ray dif 1. 2.	nission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books	ements, workin croscopy, atom J.K. . Kodgire, Even , McMillan puł	g). ic force microscopy, X- rest Publishing House
Transr Scanni ray dif 1. 2. 1.	mission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books James F. Shacketford, introduction to material science	ements, workin croscopy, atom J.K. . Kodgire, Even , McMillan puł Ed. Toppers. C	rest Publishing House
Transr Scanni ray dif 1. 2. 1. 2.	mission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books James F. Shacketford, introduction to material science D.Z. Jestrazebaski, properties of Engg. Materials, 3rd	ements, workin croscopy, atom J.K. . Kodgire, Even , McMillan puł Ed. Toppers. C	rest Publishing House
Transr Scanni ray dif 1. 2. 1. 2.	mission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic ffraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books James F. Shacketford, introduction to material science D.Z. Jestrazebaski, properties of Engg. Materials, 3rd J.L. Lee and Evans, Selecting Engineering materials f	ements, workin croscopy, atom J.K. . Kodgire, Even , McMillan put Ed. Toppers. C or chemical and	g). ic force microscopy, X- rest Publishing House blishing company, o. Ltd d process plants, Business
Transr Scanni ray dif 1. 2. 1. 2. 3.	mission electron microscopy TEM (Basics, Principal Ele ing probe microscopes: Study of scanning tunneling mic fraction Textbooks A textbook of machine design, Khurmi R.S. and Gupta Material Science & Metallurgy for Engineers, Dr. V. D Reference Books James F. Shacketford, introduction to material science D.Z. Jestrazebaski, properties of Engg. Materials, 3rd J.L. Lee and Evans, Selecting Engineering materials for Works 1978	ements, workin croscopy, atom J.K. . Kodgire, Even , McMillan put Ed. Toppers. C or chemical and by Charles P F	g). ic force microscopy, X- rest Publishing House blishing company, o. Ltd d process plants, Business Poole, Frank J Owens.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10			
2	Group Presentation on Unit-5	05			
3	LearniCo Test on Each Unit	05			
	Total	20			

	S.Y.	B. Tech. Chemical Eng	ineering	
]	Pattern 2022 Semester	: III	
		E222005: Process Calc		
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:
Theory:	03 hrs/week	03	Continuous Com Evaluation: 20M InSem Exam: 20 EndSem Exam: 60	arks Marks
	isite Courses, if any: -C and Chemistry.	ourses of Engineering	Mathematics, Engi	neering Mechanics,
calculTo stuTo stu	able students to learn the ap late the energy requirements udy basic concepts of Humic udy different types of fuels a	for unit operations. dification operation. and understand the comb	ustion calculations.	tion and precisely to
Course (Dutcomes: On completion o		ll be able to–	
		Course Outcomes		Bloom's Level
CO1	Determine the composition	on of the materials.		3-Apply
CO2	Apply the various laws go	overning solid, liquid and	d gas phases	3-Apply
CO3	Calculate the amount of n unit operation and process	_	y out the suitable	3-Apply
CO4	Evaluate the energy requir processes in chemical ind		operations and	3-Apply
CO5	Understand the basics of I	Humidification and com	bustion Process.	2-Understand
		COURSE CONTEN	ſS	
Unit I	Units and Basic Chemical I	Principle	(08hrs)	COs Mapped - CO1, CO2
	ion to unit operations, Units			its, conversions, ideal
	gas laws. Mole fractions a Amagat's, concept of vapor			

Unit II	Material Balance without Chemical Reactions	(08hrs)	COs Mapped - CO1, CO2, CO3
Basic Cor	cepts and Introduction to first law of thermodyna	mics, material bala	ance calculations for
listillatior	h, Filtration, Extraction, Mixing, crystallization. Bypa	ass and Recycling o	operations
Unit III	Material Balance with chemical reactions	(08hrs)	COs Mapped - CO1, CO2, CO3,
	of limiting and excess reactants, percentage conv of unsteady state processes involving chemical reaction		selectivity. Material
Unit IV	Energy Balance	(08hrs)	COs Mapped - CO1, CO2, CO4,
calculatio		eactions, adiabatic	iname temperature
	n and combustion, Heat of reaction, adiabatic r	eactions, adiabatic	e flame temperature
Unit V	Humidification and Combustion	(08hrs)	COs Mapped - CO1, CO5
Humidity	and saturation: Molal humidity, absolute molal , psychrometric chart. Types of Fuel, Calorific	humidity, relative	CO1, CO5 humidity, saturation
Humidity humidity	and saturation: Molal humidity, absolute molal , psychrometric chart. Types of Fuel, Calorific	humidity, relative	CO1, CO5 humidity, saturation
Humidity humidity calculatio	and saturation: Molal humidity, absolute molal , psychrometric chart. Types of Fuel, Calorific ons.	humidity, relative values, Orsat An	CO1, CÔ5 humidity, saturation alysis, combustion
Humidity humidity calculatic	y and saturation: Molal humidity, absolute molal , psychrometric chart. Types of Fuel, Calorific ons. Text Books anan. K.V. and Lakshmikutty.B, "Stoichiometry and M. Himmelblau, "Basic Principles and Calculations	humidity, relative values, Orsat An Process Calculatior	CO1, CO5 humidity, saturation alysis, combustion
Humidity humidity calculation 1. Naray 2. David	y and saturation: Molal humidity, absolute molal , psychrometric chart. Types of Fuel, Calorific ons. Text Books anan. K.V. and Lakshmikutty.B, "Stoichiometry and M. Himmelblau, "Basic Principles and Calculations	humidity, relative values, Orsat An Process Calculatior	CO1, CO5 humidity, saturation alysis, combustion
Humidity humidity calculatic 1. Naray 2. David Public	and saturation: Molal humidity, absolute molal psychrometric chart. Types of Fuel, Calorific ons. Text Books anan. K.V. and Lakshmikutty.B, "Stoichiometry and M. Himmelblau, "Basic Principles and Calculations ation.	humidity, relative values, Orsat An Process Calculatior in Chemical Engine	CO1, CO5 humidity, saturation alysis, combustion

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignments on unit-1, Unit-2, Unit-3 &Unit-4, 5	10		
2	Group Presentation on Unit-5	05		
3	LearniCo Test on Each Unit	05		
	Total	20		

]	Pattern 2022 Semester	r: III	
	CHE	22006: Organizationa	l Behavior	
Teaching	g Scheme:	Credit Scheme:	Examination Sc	heme:
Theory :	01 hr/week	01	Term work: 25	Marks
Prerequis	ite Courses, if any: -			
ToTo	bjectives: present a problem oriented address the underlying cond give an idea about different	cepts, methods of organi	zation.	
Course (Dutcomes: On completion o	f the course, students w	ill be able to-	
		Course Outcomes		Bloom's Level
CO1	To understand various met behavior model	hods and terms used dif	ferent organizationa	al 1-Knowledge
CO2	To understand Individual E personality, misbehavior and	-	erception, motivation	on, 2-Understand
CO3	To understand group behave	vior, leadership and pow	ver	2-Understand
CO4	To understand dynamics of change.	f organizational behavio	or and managing	3-Apply
		COURSE CONTEN	TS	I
	Modu	le-1	(03hrs)	COs Mapped - CO1
nodel, Ne	ional Behavior (OB): Learn ew challenges for OB Manag se Study Analysis	0 0	0	•
	Modu	le-2	(03hrs)	COs Mapped -

Perception: Meaning & Definition, Perceptual process, Importance of Perception in OB

Motivation: Nature & Importance, Herzberg's Two Factor theory, Maslow's Need Hierarchy theory, Alderfer's ERG theory

Case Study Analysis

Module-3	(03hrs)	COs Mapped –
		CO3

Communication: Importance, Types, Barriers to communication, Communication as a tool for improving Interpersonal Effectiveness, Groups In Organization: Nature, Types, Why do people join groups, Group Cohesiveness & Group Decision Making- managerial Implications, Effective Team Building

Leadership: Leadership & management, Theories of leadership- Trait theory, Behavioral Theory, Contingency Theory, Leadership & Followership, How to be an Effective Leader

Conflict: Nature of Conflict & Conflict Resolution Transactional Analysis: An Introduction to Transactional Analysis, Case Study Analysis

Module-4	(03hrs)	COs Mapped – CO4	
			٠

Organizational Culture: Meaning & Definition, Culture & Organizational Effectiveness Human Resource Management: Introduction to HRM, Selection, Orientation, Training & Development, Performance Appraisal, and Incentives Organizational_Change: Importance of Change, Planned Change & OB Techniques International <u>OB</u>: An Introduction to Individual & Interpersonal Behavior in Global Perspectives, Case Study Analysis

Reference Books

- 1. Stephen P. Robbins, Timothy A. Judge, Neharika Vohra, Organizational Behavior, Pearson Education
- 2. Udai Pareek, Understanding Organizational Behaviour, Oxford Higher Education
- 3. Margi Parikh and Rajan Gupta, Organizational Behaviour, McGraw Hill Education
- 4. Fred Luthans, Organizational Behavior, McGraw Hill
- 5. Schermerhorn, Hunt and Osborn, Organizational behavior, John Wiley

	Guidelines for Guidelines for Term work Assessment				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Two Assignments on Module-1, Module-2, Module-3	15			
2	Group Presentation on Module-4	10			
	Total	25			

Nashik

		S. Y.	B. Tech. Chemical Eng	gineering		
Pattern 2022 Semester: III						
			CHE222007: Chemistry	ILab		
Teaching Scheme:Credit Scheme:Examination Scheme:						
Practical: 04 hrs/week02Practical: 50 Mark TW: 25 Marks		S				
	-	te Courses, if any: - Know g Chemistry.	ledge of fundamental Cl	hemistry up to XII stand	dard and first year	
•	To To To	ojectives: impart the basic concepts of develop understanding about study the different analytica Outcomes: On completion o	at concepts of organic re al instrumentation techni	actions for analysis of ques and their applicati		
Cou			Course Outcomes		Bloom's Level	
C	O1 Analyze the strength of forces and evaluate the size and molecular weight of the molecule.		2-Understand			
C	02	Estimate the kinetics of reactions.	eaction and analyze the f	factors controlling the	3-Apply	
C	03	Analyze the given chem techniques.	ical substance by differ	rent Instrumentation	3-Apply	
C	04	Prepare and analyze the q of test.	uality of organic compo	unds by different kinds	3-Apply	
		List of	Laboratory Experime	nts	·	
br. Io.			CO Mapped			
1	To d	etermine diameter of solute	molecule by viscosity r	neasurements.	CO1	
2	of es				CO2	
3	Preparation of benzoic acid from benzamide, crystallization and purity CO4 checking by TLC.					
4	To find molecular wt. of solute by depression in freezing point of solvent CO1					

5	Estimation of Cu ⁺⁺ ions by spectrophotometer	CO3				
3						
6	Identification of given organic compound (Acid)	CO4				
7	Identification of given organic compound (Base)	CO4				
8	Identification of given organic compound (Phenol)	CO4				
9	Identification of given organic compound (Neutral)	CO4				
10	To determine molecular weight of solid by Elevation inB.P	CO1				
	Text Books	L				
1.]	Laboratory manual on general and applied chemistry by Dr. S. K. Bhasin, Dhanpa	atrai				
pul	publication.					
2.1	2. Laboratory manual on engineering chemistry by Dr. S. K. Bhasin, Dhanpatrai publication.					
3.]	3. Instrumental methods of chemical analysis Chatwal -Anand					
	Reference Books					

1. Instrumental Methods of Analysis, H.H.Willard, L.L. Merritt and J.A. Dean & F.A Settle, CBS Publishers, 7th Edition, 1988

2. Vogel's analytical chemistry

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Nashik

(Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Chemical Engineering Pattern 2022 Semester: III CHE222008: Fluid Mechanics Lab **Teaching Scheme: Credit Scheme: Examination Scheme:** Practical: 02 hrs/week 01 **Oral: 25 Marks** Term work: 25 Marks Prerequisite Courses, if any: - Courses of Engineering Mathematics, Engineering Mechanics, Physics and Chemistry **Course Objectives:** To get knowledge of viscosity measuring device. To get knowledge pressure measuring devices. • To apply basic equations of fluid flow to determine fluid flow rate by different devices. Course Outcomes: On completion of the course, students will be able to-**Course Outcomes Bloom's Level** 2-Understand Determine viscosity of fluid using viscometer and predict its variation. **CO1** 1-Knowledge **CO2** Identify type of flow through pipeline. Describe different pressure measuring devices. **CO3** 1-Knowledge Apply basic equations of fluid flow to determine fluid flow rate and **CO4** 3-Apply energy losses by different devices. Explain different centrifugal pump characteristics. **CO5** 1-Knowledge **List of Laboratory Experiments**

Sr. No.	Laboratory Experiments	CO Mapped
1	Determination of viscosity of fluid using viscometer	CO1
2	Determination of type of flow using Reynolds Apparatus	CO2
3	Verification of Bernoulli's theorem	CO3, CO4
4	Determination of coefficient of discharge of venturimeter	CO4
5	Determination of coefficient of discharge of orifice meter	CO4
6	Determination of coefficient of discharge of rotameter	CO4
7	Determination of friction factor (Major losses)	CO4

8	Determination of minor losses	CO4	
9	Determination of centrifugal pump characteristics.	005	
Taxt Books			

Text Books

- 1. Modi, L.P., Seth, S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi.
- 2. Bansal, R. K., "A Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi Publications.

Reference Books

- 1. McCabe, W. L, J. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill International Edition, Seventh edition.
- 2. Noel de Nevers; Fluid Mechanics for Chemical Engineers, Third Edition; McGraw Hill.
- 3. M. Coulson, J.F. Richardson, with J.R. Backhurst and J.H. Harker, Coulson, Richardson Chemical Engineering, Volume-1, 6th ed., Butterworth-Heinemann.

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.
- After performing the experiment students will check their readings, calculations from the teacher.
- After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

		S. Y. B. Teo	h. Chemical Engine	eering	
		Patterr	n 2022 Semester: II	I	
		CHE222009:	Engineering Mater	ials Lab	
Te	eaching	g Scheme:	Credit Scheme:	Examination S	cheme:
Pr	actica	S S			
Pre	requis	site Courses, if any: - Basics of I	Physics, Chemistry,	Engineering Math	nematics.
	 To To To 	bjectives: 9 get knowledge mechanical prop 9 get analyze the quality of engine 9 synthesize and characterize the Dutcomes: On completion of the	eering materials. nano materials.		
		_	se Outcomes		Bloom's Level
	CO1	Determine hardness of er instruments.	ngineering material	s by various	2-Understand
(CO2	Determine toughness of engine	eering materials.		2-Understand 2-Understand 3-Interpret
(CO3	Determine the defects present testing.	t in the specimen by non-destructive		
	CO4	Describe and analyze nano ma	aterials and their properties.		
(CO5	Identify electron microscope an	nd their types.		2-Identify
		List of L	aboratory Experim	ents	
r. 0.		Laboratory I	Experiments		CO Mapped
1	Determination of hardness of C.I, M.S, brass, aluminum specimen by Brinell's hardness test.				CO1
	Determination of hardness of C.I, M.S, brass, aluminum specimen by		CO2		
2	Rockwell hardness test				
3	Deter	mination of toughness of M.S, b	rass, aluminum by ir	npact test.	CO3, CO4
4	Study of Microstructure of ferrous material. CO4			CO4	
•	Study of Microstructure of non-ferrous material. CO4				

6	Determination of defects in material by dye penetration Test.	CO4			
7	Determination of defects in material by magnetic particle test.	CO4			
8	Synthesis of gold/silver (Au/Ag) nanoparticles and record the optical absorption spectra using simple absorption spectrometer.	CO4			
9	Synthesis of Fe2O3 nanoparticles of different shapes and calculates the average size using scanning electron microscope SEM or TEM.	CO5			
Text	Text Books				
1.	1. A text book of machine design, Khurmi R.S. and Gupta J.K.				
2.	2. Material Science & Metallurgy for Engineers, Dr. V. D. Kodgire, Everest Publishing House.				
Defe	Deference Deale				

Reference Books

- 1. James F. Shacketford, introduction to material science, McMillan publishing company,
- 2. D.Z. Jestrazebaski, properties of Engg. Materials, 3rd Ed. Toppers. Co. Ltd
- J.L. Lee and Evans, Selecting Engineering materials for chemical and process plants, Business Works 1978
- 4. Introduction to Nano Technology, John Wiley & Sons by Charles P Poole, Frank J Owens.
- 5. Nano materials, synthesis, properties and applications, Institute of physics publishing, Bristol and

Philadelphia, by A.S. Edelstein and R.C. Kamarhati

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	S. Y. B. Te	ch. Chemical En	gineering		
	Patter	n 2022 Semester	r: III		
		: Skill Developm			
Teachi	ing Scheme: C	redit Scheme:	Examination Schem	e:	
Practic	cal: 02 hrs/week	01	Termwork: 25 Mar	ks	
rerequ	iisite Courses, if any: -Basic Knowle	edge of computer,	Communication and Eng	lish	
 To e To e To i To i 	Objectives: enhance ability of students to write to enable students to make effective pow improve group working ability of stu improve computational ability using	wer point slides in dents' group/ tear Microsoft Excel.	n MS PowerPoint or equinated and a more that werk.	valent software.	
Course	e Outcomes: On completion of the c	ourse, students wi	ill be able to–		
	Cour	rse Outcomes		Bloom's Leve	
CO1		Write grammatically correct technical reports in MS Words or equivalent software.			
CO2	Prepare effective power point s software.	Prepare effective power point slides in MS PowerPoint or equivalent software.			
CO3	Perform the group/ team Work/ t	ask.		3-Apply	
CO4	Apply MS Excel and it's features	s for solving prob	lems.	3-Apply	
CO5	Present, convince and persuad professional.	de to be an eff	fective and successful	3-Apply	
	List	of Assignments			
No.	Par	ticulars		CO Mapped	
1	Development of communication ski	lls in oral as well	as writing.	CO1, CO3	
	The writing skills should emphasize			CO1, CO5	

3	The oral communication skills should emphasize presentation skills.	CO2, CO5			
4	Use of audio-visual facilities like working of LCD, powerpoint presentations required for making effective presentation.	CO2, CO5			
5	Group Discussion	CO3, CO5			
6	Group Task	CO3, CO5			
7	Introduction to Microsoft Excel	CO4, CO5			
Text Books					
1. Kaul, Asha. Business Communication. Delhi: Prentice-Hall of India, 2006					
2. Nitin	2. Nitin Bhatnagar. Effective Communication and Soft Skills. Pearson Education India.				

Reference Books

1. Eric Garner. Team Building.

2. Wendy Palmer and Janet Crawford. Leadership Embodiment.

Guidelines for Assignments

- Teacher will brief the given assignment to students its procedure, observations calculation, and outcome of this assignments.
- software required for the allotted assignments will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.
- After performing the assignment students will check the same from faculty.
- After checking they have to prepare final copy of the assignment.

Guidelines for Student's Assignments

Printed assignments should include title, aim, diagram (if any), procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

•Each assignment from lab journal is assessed for thirty marks based on three rubrics.

•Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

		Pattern 2022 Semester CHE222011: Chemistr			
Teaching Scheme:Credit Scheme:Examination Scheme:					
Theory :	Theory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks		S		
-	site Courses, if any: Knowl	edge of fundamental Ch	emistry up to XII standard	and first year	
Engineerii	ng Chemistry.				
• To • To	• impart the basic concepts of • develop understanding abo • study the different analytic • Dutcomes: On completion o	out concepts of organic re al instrumentation techn	iques	t	
		Course Outcomes		Bloom's Leve	
CO1	Apply the concept of na polymers.	turally occurring polym	er and synthesize the new	2 Understand	
CO2	Apply the theory of synt	thesis of complex and ev	valuate their properties	3 Apply	
CO2 CO3			valuate their properties lifferent Instrumentation	3 Apply 3 Apply	
	Analyze the given che techniques.	emical substance by d		3 Apply	
CO3	Analyze the given che techniques. Understand catalyst and compounds.	emical substance by d	lifferent Instrumentation	3 Apply	
CO3 CO4	Analyze the given che techniques. Understand catalyst and compounds. Understand concept of i	emical substance by d	lifferent Instrumentation oply it in the synthesis of lifferent isomers and their	3 Apply 3 Apply	

carbaryl Carbohydrate: Cyclic structure of glucose, cellulose, starches. Ethanol based products, Cellulose acetate, nitrate, ether. catalytic site of enzyme, factors affecting enzyme activity

Unit IITransition metals and Co-ordination chemistry(08hrs)CO2Electronic configuration of first series transition metals shapes of d- orbital characteristics (variable
oxidation states, magnetic property, color of transition metal compounds). Ligands, C.N. and geometry,
nomenclature of complexes, chelates. Theories of co-ordination- i) Werner ii) EAN
iii) VBT for
tetrahedral and octahedral complexes iv) CFT (including crystal field splitting in octahedral field and
tetrahedral field, CFSE for octahedral complexes, applications of CFT)

Unit III	Volumetric Analysis	(8hrs)	CO3		
Standard s	Standard solutions and their preparations, Concentration terms, small scale units of concentration, types				
of titratio	ons-neutralization (with titration curves), complexed	ometric, redox and pr	ecipitation with		
examples.	Theory of indicators in above titrations. Numericals	on all above			

 Unit IV
 Surface Chemistry
 (8hrs)
 CO4

(a) Adsorption: Introduction to Freundlich and Langmuir theories of adsorption, adsorption from solution, B.E.T. Theory of adsorption of gases, Application of adsorption, numerical on above.

(b) Applications characteristics, types, adsorption theory of catalysis, promoters, poisons, industrial applications of catalysts; Zeolites- structure, properties, applications as catalyst for reactions(amination of alcohol. NOX pollution control, alkylation, cracking conversion of methanol), Hydroformylation using catalyst, functionalized polymer,

Unit V	Stereochemistry and Unit processes in organic	(8hrs)	CO5
	synthesis		

Basic concepts, conformation isomerism of ethane, propane, butane, cyclohexane, monosubstituted cyclohexane, optical isomerism with 1 and 2 chiral centres, Mechanism, thermodynamics and kinetics of nitration, halogenations, sulphonation, preparation of nitrobenzene, chloral (DDT) and vinyl chloride (PVC), dodecyl benzenesulphonate, alpha-olefin sulphonate, 2-ethyl hexanol

Text Books	
1. Inorganic chemistry - J.D. Lee	
2. Inorganic chemistry - Cotton and Wilkinson's	
3. Physical chemistry -P L Soni	
4. Physical Chemistry- Atkins	
5. Physical Chemistry – Maron Pruton	
6. Instrumental methods of chemical analysis Chatwal – Anand	

Reference Books
1. Analytical chemistry- Skooge and West
2. Reaction mechanism - Jerry March
3. Organic Chemistry - Morrison and Boyd
4. Instrumental Methods of Analysis, H.H.Willard, L.L. Merritt and J.A. Dean & F.A Settle, CBS Publishers, 7 th Edition, 1988

	Guidelines for Continuous Assessment of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignment on 1,2,3,4,Unit	10			
2	Group presentations on Unit 5	05			
3	Learnico test on each unit	05			

Nashik

	S. Y	. B. Tech. Chemical Eng	gineering			
		Pattern 2022 Semester	:: IV			
		CHE222012: Heat Tra				
Teaching Scheme:Credit Scheme:Examination Scheme:						
Theory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks				larks Marks		
Prerequis	site Courses, if any: -Engin	eering Mathematics I and	l II, Thermodynamic	S		
 To To apj 	o use heat transfer principles recognize the various mode provide the basic knowle plications.	es of heat transfer i.e. con edge in thermal system	duction, convection design and to enlig	and radiation.		
Course (Dutcomes: On completion of		ll be able to-			
		Course Outcomes		Bloom's Level		
CO1	Demonstrate knowledge radiation, and convection l		cepts of conduction	, 3-Apply		
CO2	Calculate problem on cond	duction, convection and r	adiation.	3-Apply		
CO3	Identify the type of heat tra	ansfer model that needs t	o be applied.	2-Understand		
CO4	Identify, formulate and exchanger.	solve engineering prob	lems based on hea	t 3-Apply		
CO5	Select evaporator for indu	strial applications.		2-Understand		
		COURSE CONTENT	ГS			
Unit I	Introdu	ction	(08hrs)	COs Mapped - CO1, CO2, CO3		
analysis. cylinder a thickness	of heat transfer- radiation, Steady state heat conductio and hollow sphere. Contact s of insulation. Heat t /unsteady state heat conduct	n through a plane slab, co resistance, heat transfer l ransfer through exten	omposite slab, hollow between surfaces and	w cylinder, composite l surrounding, critical		

			CO1, CO2, CO3		
	and forced convection, Equations for convective heat				
±	ondensation: Modes and features, Nusselt's equation,	condensation or	vertical and horizontal		
Unit	iling: Pool boiling and nucleate boiling Radiation	(08hrs)	COg Mannad		
III	Kadiation	(00118)	COs Mapped – CO1, CO2, CO3		
	radiation, black body radiation, properties of radiati	on, laws of radia			
	between two surfaces, radiation shields	,			
Unit	Heat Exchangers	(08hrs)	COs Mapped –		
IV			CO4		
	pes of heat exchangers, overall heat transfer coeffi-				
0	er design by LMTD and effectiveness-NTU method nt and area) Shell and tube heat exchangers. Plate tw	,			
Unit V	coefficient and area), Shell and tube heat exchangers, Plate type heat exchangeUnit VEvaporation(08hrs)COs Mappediate				
	Evaporation				
Introduct	Evaporation tion, types of evaporators, material and energy balance , multiple effect evaporators	, , , , , , , , , , , , , , , , , , ,	COs Mapped – CO5 elevation, capacity and		
Introduct	tion, types of evaporators, material and energy balance , multiple effect evaporators Text Books	e, boiling point e	CO5 elevation, capacity and		
Introduct economy 1. Fu	tion, types of evaporators, material and energy balance , multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (3)	e, boiling point e	CO5 elevation, capacity and		
Introduct economy 1. Fu Pu	tion, types of evaporators, material and energy balance , multiple effect evaporators Text Books	e, boiling point e	CO5 elevation, capacity and		
Introduct economy 1. Fu Pu	tion, types of evaporators, material and energy balance r, multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (S blishers. eat and Mass Transfer by P K Nag, McGraw-Hill publ Reference Books	e, boiling point e	CO5 elevation, capacity and		
Introduct economy 1. Fu Pu 2. He	tion, types of evaporators, material and energy balance, multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (blishers.	e, boiling point e SI Units), New A ications	CO5 elevation, capacity and		
Introduct economy 1. Fu Pu 2. He 1. J P H	tion, types of evaporators, material and energy balance, multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (blishers. eat and Mass Transfer by P K Nag, McGraw-Hill publ Reference Books	e, boiling point e SI Units), New A ications	CO5 elevation, capacity and age International ew Delhi (2004)		
Introduct economy 1. Fu Pu 2. He 1. J P H 2. S. P. S	tion, types of evaporators, material and energy balance r, multiple effect evaporators Text Books Indamentals of Engineering Heat and Mass Transfer (S Iblishers. Eat and Mass Transfer by P K Nag, McGraw-Hill publ Reference Books Iolman, "Heat Transfer" 9 th edition, Tata McGraw Hill th	e, boiling point e SI Units), New A ications l Publications, N iversities Press (I	CO5 elevation, capacity and age International ew Delhi (2004) india), 2005		
Introduct economy 1. Fu Pu 2. He 1. J P H 2. S. P. S 3. D. Q.	tion, types of evaporators, material and energy balance , multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (statement blishers. eat and Mass Transfer by P K Nag, McGraw-Hill publ Reference Books Iolman, "Heat Transfer" 9 th edition, Tata McGraw Hill Sukhatme, "A Textbook on Heat Transfer", 4 th ed, Unit th	e, boiling point e SI Units), New A ications I Publications, N iversities Press (I w Hill Publicatio	CO5 elevation, capacity and age International ew Delhi (2004) (india), 2005 n, New Delhi		
Introduct economy 1. Fu Pu 2. He 1. J P H 2. S. P. S 3. D. Q. 4. Bird I	tion, types of evaporators, material and energy balance , multiple effect evaporators Text Books andamentals of Engineering Heat and Mass Transfer (blishers. eat and Mass Transfer by P K Nag, McGraw-Hill publ Reference Books Iolman, "Heat Transfer" 9 th edition, Tata McGraw Hil Sukhatme, "A Textbook on Heat Transfer", 4 th ed, Un Kern, "Process Heat Transfer", 11 th ed., Tata McGraw	e, boiling point e SI Units), New A ications l Publications, N iversities Press (I w Hill Publicatio mena" 2ed., Wile	CO5 elevation, capacity and age International ew Delhi (2004) (india), 2005 n, New Delhi ey Publications,2002		

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	3 Assignments on Units 1, 2, 3 and 4	10			
2	Group Presentation on Unit 5	05			
3	LearniCo Test on Each Unit	05			
	Total	20			

	S.Y.	B. Tech. Chemical Eng	ineering		
]	Pattern 2022 Semester	: IV		
		222013: Mechanical Op			
Teaching	Scheme:	Credit Scheme:	Examination So	chem	e:
Theory :03 hrs/week03Continuous Compreh Evaluation: 20Marks InSem Exam: 20Mark EndSem Exam: 60Ma					ks urks
	site Courses, if any: -C nd Chemistry	ourses of Engineering	Mathematics, En	iginee	ering Mechanics,
• To : • To :	study properties of solids, s understand fluid solid separ study mixing, agitation and	ation using sedimentation Filtration Operations.	n operation, Fluidi	izatio	n.
Course O	utcomes: On completion o	f the course, students wil	l be able to–		
		Course Outcomes			Bloom's Level
CO1	Classify the type of screening and size reduction equipment for different particle sizes 2- Understand				2- Understand
CO2	To understand different ty	pes solid-liquid, solid-ga	as separation optio	ons	2-Understand
CO3	Explain fluidization appli type of conveyor for trans			ble	2-Understand
CO4	Calculate the mixing in operation for various type	es of solids and liquids.		-	3-Apply
CO5	Use concepts Filtration equipment.			ion	3-Apply
		COURSE CONTENT	TS		
Unit I	Size Reduction and Screen	ing Operations	(08hrs)	CO: CO2	s Mapped - CO1, 2
different s	ze and shape, specific surfa size reduction equipment's, ndustrial screening equipm	crushing efficiency, wet	grinding, open ci	•	
Unit II	Sedimentation and Separation Methods(06hrs)COs Mapped -, CO2, CO3				
equipmen	ation, kynch theory of se t, forth-flotation cell, mag precipitator, mineral jig.				

Unit III	Fluidization and transportation of solids	(08hrs)	COs Mapped - CO3				
Concept of	Concept of fluidization, fluidized bed systems, determination of minimum fluidization velocity, flow						
-	through packed bed, applications of fluidized bed. Spouted bed and fixed bed. Conveyors: principle,						
constructio	construction and working. Advantages, disadvantages and design calculations of belt conveyors,						
screw conv	screw conveyors, chain & flight conveyors, bucket elevators and pneumatic conveyors						
Unit IV	Mixing Operation	(08hrs)	COs Mapped – CO4				
Necessity of mixing and agitation in chemical industries, axial flow and radial flow agitators and its							
types agitation vessel, un-baffled and baffled tanks, draft tube, power requirement in mixing							
calculations, performance of mixers, mixing index, types of mixing equipment's sigma mixer, static							
mixer, ribbon blender, bunbury mixer, pug mill.							
Unit V	Filtration	(08hrs)	COs Mapped - CO5				
Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration,							
incompressible and compressible cake filtration, classification of filtration and filters, filtration							
equipment, selection, sizing filter media and filter aids, classification of filtration, pressure drop through							
filter cake, filter medium resistance, specific cake resistance, types of filters – plate and							
frame, rotary vacuum, horizontal pressure leaf filters. Centrifugal filters-basket type.							
Text Books							
1. R.S. Hiremath and A.P. Kulkarni, Unit operation in Chemical Engineering, Everest publication.							
2. Kiran D. Patil, Mechanical operations: Fundamental Principles and Application, Nirali publication.							
Reference Books							
1. McCabe W. L. & Smith J.C. "Unit Operations in Chemical Engineering". McGraw Hill Publications.							
2. Coulson J. M. and Richardson J.F. "Chemical Engineering, Vol. 2".							
3. Badger W. L and Banchero J.T. "Introduction to Chemical Engineering", McGraw Hill							
Publications.							

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10		
2	Group Presentation on Unit-5	05		
3	LearniCo Test on Each Unit	05		
	Total	20		

	S. Y.	B. Tech. Chemical Eng	ineering				
Pattern 2022 Semester: IV CHE222014: Thermodynamics							
Theory :03 hrs/week		03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks				
Prerequis	site Courses, if any: - Cours	es in Engineering Mathe	matics, Physics and (Chemistry.			
 Tc Tc pa Tc cal 	bjectives: o introduce basic concepts of o formulate and apply the law rticular thermodynamic proc o understand different meth lculations. Outcomes: On completion o	vs of thermodynamics in ess. ods for performing pha	order to solve a give se and chemical rea				
Course		Course Outcomes		Bloom's Level			
CO1	Understand basic concepts of thermodynamics, as well as their applications and limitations in Chemical Engineering						
CO2	Formulate the relationship for different processes and process in order to solve th						
CO3	Compare ideal gas/solution based on the concepts of energy	e 3-Apply					
CO4	Evaluate the various methods and assumptions for performing phase equilibrium calculations			3-Apply			
CO5	Determine the equilibrither equilibrither the equilibrium when dealing	in 2-Understand					
	•	COURSE CONTENT	ſS				
Unit I	Introduction and Basic Con	cept	(08hrs)	COs Mapped - CO1			
Introduc	tion and Fundamentals of T	hermodynamics, System	s and variables, state	e and path function,			

work, heat, reversible and irreversible processes, internal energy, Zeroth law of thermodynamics, First law of thermodynamics for non-flow process and flow process, equilibrium state, phase rule, heat capacity.

Unit II	P-V-T Behavior and law of thermodynamics	(08hrs)	COs Mapped - CO2		
P.V.T. b	ehavior of pure fluids, Equation of state and concep	t of ideal gas, Proc	cesses involving ideal		
gas: con	stant volume process, constant pressure process, o	constant temperatu	re process, adiabatic		
process	and polytropic process; Equation of state for real	gases, second law	of thermodynamics:		
Spontane	eous process, heat reservoir, heat pump, heat eng	ine, Kelvin Plank	statement, Clausius		
statemen	t, entropy, Carnot principle, third law of thermodynar	nics.			
Unit	Thermodynamic Properties of Fluids	(08hrs)	COs Mapped –		
Ш			CO3		
Fundame	ental property relations for closed systems, Maxw	vell relationships,	Clausius- Clapeyron		
equation	, Partial molar properties, chemical potential, Ideal ar	nd non-ideal mixtur	es/Solutions, fugacity		
and fuga	city coefficient for pure components and for mixture	of gases and liquids	. Lewis Randall rule,		
Henry's	law, activity co-efficient, Gibbs-Duhem equation, Ex	cess properties of m	ixtures.		
Unit	Phase equilibrium	(08hrs)	COs Mapped –		
IV			CO4		
Criteria	of equilibrium, phase equilibrium criteria, the phas	e rule, Duhem's t	heorem, vapor-liquid		
equilibri	equilibrium of ideal and non-ideal solution at low to moderate pressures, Raoult's Law and Modified				
Raoult's	Law, dew point and bubble point calculations, therm	odynamic consister	ncy test.		
Unit V	Chemical reaction equilibrium	(08hrs)	COs Mapped – CO5		

The reaction coordinates, Application of the criteria for equilibrium to chemical reactions, the standard Gibbs free energy change and the equilibrium constant, effect of temperature on equilibrium constant, evaluation of the equilibrium constant, relation of equilibrium constant to composition, calculation of equilibrium conversion for single reactions, the phase rule and Duhem's theorem for reacting systems

Text Books

- 1. S.Sandler, Chemical, Biochemical and Engineering Thermodynamics, 4th edition, John Wiley, 2006.
- 2. Rao Y.V.C., Chemical Engineering Thermo Dynamics, University press (INDIA) Ltd.
- 3. Hill, T.L., An Introduction to Statistical Thermodynamics, Dover Publications, 1960.

Reference Books

- 1. J. M. Smith, H. C. Vanness, M. M. Abott, 2005, Introduction to Chemical Engineering Thermodynamics, McGraw Hill, 7th edition
- K. V. Narayanan, 2011, Chemical Engineering Thermodynamics, Prentice Hall Of India, New Delhi.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	10		
2	Group Presentation on Unit-5	05		
3	LearniCo Test on Each Unit	05		
	Total	20		

Nashik

	S. Y.	. B. Tech. Chemical Eng	gineering		
		Pattern 2022 Semester	:: IV		
		CHE222015: Soft Ski	ills		
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:	
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks				larks Marks	
Prerequis	ite Courses, if any: - Englis	sh			
cre • To • To	encourage the students for eative thinking. make the students aware of develop leadership skills ar Dutcomes: On completion of	critical thinking and pro nd organizational skills th	blem-solving skills. rrough group activiti	-	
	Course Outcomes Bloom's Level				
CO1	Memorize various element	ts of effective communic	ative skills.	2-Understand	
CO2	Apply critical thinking ski	3-Apply			
CO3	Improve social and work- well-being.	ll 2-Understand			
CO4	Interpret people at the emo	tional level through emo	tional intelligence.	3-Apply	
CO5	Identify the situation and t	ake necessary decisions a	as a leader.	2-Understand	
	1	COURSE CONTENT	ГS	I	
Unit I	Soft Skills & Comm	COs Mapped - CO1			
Introduction, meaning, significance of soft skills: definition, significance; types of communication skills: Intrapersonal & Inter-personal skills: Verbal and Non-verbal Communication.					
Unit II				COs Mapped - CO2	
	istening, Observation, Cu Thinking.		Analytical Thinking	g, Open-mindedness,	
Unit III	Problem Solving &	Decision Making	(08hrs)	COs Mapped – CO3	

		CO4
g Emotions, Thinking before Reacting, Empathy for Getors, Controlling Stress –Tips and Buckingham's me		iess, Self-Regulation,
Leadership Skills	(08hrs)	COs Mapped – CO5
ilding, Decision-Making, Accountability, Planning, Team Building, Time Management	, Public Speaking,	Motivation, Risk-
Text Books		
aly 22, 2012) rsonality Development and Soft Skills: Preparing for	Tomorrow, Dr Shi	-
Reference Books		
ft Skills by Alex K. Published by S.Chand ft Skills: An Integrated Approach to Maximise Person ngeetha Sharma Published by Wiley.	nality Gajendra Sin harma) Publisher: Y	gh Chauhan, King books
	Leadership Skills ilding, Decision-Making, Accountability, Planning Team Building, Time Management Text Books rsonality Development and Soft Skills Publisher: Ox uly 22, 2012) rsonality Development and Soft Skills: Preparing for Linternational Publishing House; (February 28, 2018 Reference Books It skills: personality development for life success by I It skills by Alex K. Published by S.Chand It skills: An Integrated Approach to Maximise Personality Bay Sharma Published by Wiley. mmunication Skills and Soft Skills (Hardcover, A. Sl	Leadership Skills (08hrs) ilding, Decision-Making, Accountability, Planning, Public Speaking, Team Building, Time Management Text Books Text Books rsonality Development and Soft Skills Publisher: Oxford University Preuly 22, 2012) rsonality Development and Soft Skills: Preparing for Tomorrow, Dr Shilk International Publishing House; (February 28, 2018) Reference Books Clease of the Skills: Preparing for Tomorrow, Dr Shilk International Publishing House; (February 28, 2018) Reference Books Clease of the Skills Publisher Skills: Preparing for Tomorrow, Dr Shilk International Publishing House; (February 28, 2018) Clease of the Skills: Preparing for Tomorrow, Dr Shilk International Publishing House; (February 28, 2018) Clease Books Clease Books Clease Books Clease Approach to Maximise Personality Gajendra Single for Skills: An Integrated Approach to Maximise Personality Gajendra Single for Skills: An Integrated Approach to Maximise Personality Gajendra Single for Skills and Soft Skills (Hardcover, A. Sharma) Publisher: Yea

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignments on Each Unit	05		
2	Group Presentation/Discussion on Each Unit	10		
3	LearniCo Test on Each Unit	05		
	Total	20		

Nashik

(Autonomous from Academic Year 2022-23)

]	Pattern 2022 Semester:	IV	
	CHE2220	16:Process Simulation u	sing DWSIM	
Teaching S		Credit Scheme:	Examination Sch	eme:
Theory :01	hrs/week	Spoken Tutorial Certification	Spoken Tutorial	Online Exam
Prerequisite	Courses, if any: - Basics	of unit operations, unit j	processes, reactors	and Heat Exchangers
Course Obj	ectives:			
	roduce different process s			
	dy unit operations via sir			
• To lea	arn unit processes via sim	ulation approach		
Course Out	tcomes: On completion o	f the course, students wil	l be able to-	
		Course Outcomes		Bloom's Level
CO1	Understand basic conce	pts of process simulation		2-Understand
CO2	Simulate unit operation	problems by DWSIM so	ftware.	3-Apply
CO3	Solve different reactors software.	and heat exchanger prob	lems by DWSIM	3-Apply
		COURSE CONTENT	'S	
Module 1	Basics of Chemical Pro Software	ocess Simulation	(03hrs)	COs Mapped - CO1
U	nulation Configuration W	Ŭ	-	
	hoosing the units, Addin	•	-	
	eam condition of a stream Defining single phase and			
	sh vessel to the flowsheet	-		
-	ons, mixer problem	,,		, , , , , , , , , , , , , , , , , , , ,
Module 2	Simulation of Unit ope	erations	(04hrs)	COs Mapped -
	-			CO1, CO2

Specifying condenser and reboiler pressure, Specifying desired product composition through key

voluce Spo	iftring a guage value of reflux ratio. Simulate a	shortout distillation	aalumn Minimum
values, spec	ifying a guess value of reflux ratio, Simulate a	snortcut distillation	column, Minimum
and actual number of stages, Minimum reflux ratio, Optimal Feed stage location, Absorption column			
and actual if	inder of diaged, filling in ferrar fund, optimur	eeu suge loeutoli,	
Module 3	Simulation of different types of reactors	(04hmg)	COc Mannad
Module 5	Simulation of different types of reactors,	(04hrs)	COs Mapped -

Module 3Simulation of different types of reactors, Heat Exchanger(04hrs		(04hrs)	COs Mapped - CO1, CO2, CO3,			
Defin of ca • Simu streat fluid	eting chemical components and thermodynamics, A ning the properties of the streams, adding reactors, lculations, llating heat exchanger- Adding heat exchanger to t ms to the exchanger, Defining calculation type ar pressure drop, Changing the shell side configur gurations, Using master property table, Defining o	specifying reactors he flowsheet Conne nd flow direction, I rations, Changing t	, Verifying the results ecting inlet and outlet Defining cold and hot he tube side			
Module 4	Simulation of heat exchanges, custom unit	(03hrs)	COs Mapped -			
	operations using Scilab, python		CO1, CO2, CO3			
Defin outle Calcu • Intro mass Equit press	ducing Scilab CAPE-OPEN Unit Operation, Defining ning molar enthalpy of the compounds Defining t pressure of the product stream, Calculating alating molar enthalpy of product stream ducing Python script in the flowsheet Introducing flow and mole flow of the compounds, De librium function, Defining Property Packages, ure of the product stream, Calculating mass an alating enthalpy of product stream	pressures of the co molar flow rates GetProp and SetPr fining out, Proper FlashSpec functio	mpounds Calculating of product stream, rop function Defining ty Package.DWCalc n Calculating outlet			
	Text Books					
	1. A. K. Jana, "Process Simulation and Control Using ASPEN", PHI Learning Pvt. Ltd. Publications.					
	Reference Books					
 McCabe,W. L, J. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill International Edition, Seventh edition. M. Coulson, J.F. Richardson, with J.R. Backhurst and J.H. Harker, Coulson, Richardson Chemical Engineering, Volume-1", 6th ed., Butterworth-Heinemann. Ralph Schefflan, Teach Yourself the Basics of Aspen Plus, A John Wiley & Sons, inc., publication 						

Step 1:

• Login to the Student Dashboard (<u>http://spoken-tutorial.org/participant/login/</u>),

Go to 'Ongoing Test' and click 'Enroll', The invigilator will mark the Attendance for you.

Step 2:

• Please refresh your browser screen after the invigilator marks your attendance, click 'Enter into Test' in the Ongoing test tab. It will take you to a new window (Spoken Tutorial Online Test Center).

Step 3:

• After you enter your Username and Password, you will see the Homepage where you will get the list of Tests available for various FOSS / Courses. Click on the Test which you want to give. (Note: Read the instructions which appear on the screen.)

Step 4:

• Click on "Attempt Quiz Now". Then click on "Start Attempt".

Step 5:

• At the end of the test, click on "Finish attempt" in the Quiz Navigation Panel. You will get to see "Summary of Attempts". • It will also show if you missed any questions. You can click on "Return to attempts" or you can go back and attempt by clicking on the particular question number.

Step 6:

• Confirm by clicking on "Submit All and Finish" once you have completed the test. • You will get your test score on the spot.

Nashik

		S. Y.	B. Tech. Chemical En	gineering	
			Pattern 2022 Semester	r: IV	
			CHE222017: Chemistry	II Lab	
Tea	eaching Scheme: Credit Scheme: Examination Scheme:				ne:
Pra	actical	: 04 hrs/week	02	02 Practical: 50 Marks TW: 25 Marks	
	-	ite Courses, if any: - Know og Chemistry.	ledge of fundamental C	hemistry up to XII stan	dard and first ye
Cou • •	• То • То	ojectives: impart the basic concepts o develop understanding about study the different analytica	ut concepts of organic re	eactions for analysis of	
Co	urse (Dutcomes: On completion o	f the course, students wi	ill be able to-	
			Bloom's Lev		
C	CO1	Estimate the purity and quantity of substance present by traditional methods			3-Apply
C	CO2	Apply the theory of synthe	esis of complex and eval	uate their properties	2-Understand
C	CO3	Understand catalyst and its organic compound.	talyst and its mechanism and apply it in adsorption of 2-Under		2-Understand
C	CO4	Analyze the compounds puit.	the compounds purity and apply the purification techniques for 3-Apply		3-Apply
C	CO5 Apply principles of ion exchange resin for treatment of hard water.				3-Apply
		List of	Laboratory Experime	ents	
br. 10.		Labor	ratory Experiments		CO Mapped
1	Ads	orption of acetic acid on cha	arcoal to verify Freundli	ch isotherm	CO3
2	Dete	ermination of purity of sod.	Carbonate by titration n	nethod	CO1
3	Prep	paration of tris ethylene dian	nmine nickel (II) thiosu	lphate	CO2
4	Prep	aration of tetramine copper	(II) sulphate		CO2

5	Preparation of osazone derivative of glucose	CO2
6	Estimation of glucose/acetone insolution	CO1
7	Purification of organic compounds by crystallization	CO4
8	Purification of organic compounds by sublimation	CO4
9	Determination of chloride content by Mohr's method	CO4
10	To determine integral and differential heat of solution of a salt	CO1
11	Demineralization of hard water using ion exchange resin.	CO5
	Text Books	
1. Labo	ratory manual on general and applied chemistry by Dr.S. K.Bhasin, Dhanpatrai p	ublication.
2. Labo	ratory manual on engineering chemistry by Dr. S. K.Bhasin, Dhanpatrai publication	on.
	Reference Books	
1. Instr	rumental Methods of Analysis, H.H.Willard, L.L. Merritt and J.A. Dean & F.A Se	ettle, CBS
Publish	ers, 7th Edition, 1988	
2 Synt	hesis of organic compound-Vogel	

2. Synthesis of organic compound-Vogel

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.
- After performing the experiment students will check their readings, calculations from the teacher.
- After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Nashik

	S. Y. B. Tech. Chemical Engineering						
	Pattern 2022 Semester: IV						
CHE222018: Heat Transfer Lab							
Teach	ing Scheme:	Credit Scheme:	Examination Scher	ne:			
Practi	cal: 02 hrs/week	01	Oral: 25 Marks Termwork: 25 Ma	rks			
Prerequ	uisite Courses, if any: - Engin	eering Mathematics, The	rmodynamics				
 Course Objectives: To understand the various modes of heat transfer i.e. conduction, convection and radiation. To get a knowledge of heat exchanger. To get a knowledge of evaporators. 							
Cours	e Outcomes: On completion o		l be able to-	1			
		Course Outcomes		Bloom's Lev	-		
COI	Determine the thermal cor	nductivity.		2-Understand			
CO2	2 Calculate the heat transfer	coefficient using convection.		2-Understan	d		
CO3	B Determine the emissivity	using radiation.		2-Understan	d		
CO4	Determine the heat transfe	er coefficient of heat exchanger		2-Understand	ł		
COS	5 Understand evaporators cl	naracteristics.		2-Understand	1		
	List of	f Laboratory Experimer	nts				
r. No.	Labor	atory Experiments		CO Mapped			
1.	Determination of thermal con	nductivity of composite w	vall C	01			
2.	Determination of thermal cor	Determination of thermal conductivity of insulation powder CC		01			
3.	U		02				
4.	Calculation of heat transfer coefficient using forced convection CO2						
5.	Determination of Stephan Boltzmann constant CO3						
6.	Determination of emissivity			03			
7.	Determination of heat transfe exchanger	_	-	O4			
8.	Determination of heat transfe	er coefficient of shell and	tube heat C	O4			

	exchanger				
9.	Heat Transfer in agitated vessels	CO4			
10.	Material balance and energy balance of Single effect evaporator	CO5			
	Text Books				
1. Fur	ndamentals of Engineering Heat and Mass Transfer (SI Units), New Age	e International			
Put	olishers.				
2. Hea	at and Mass Transfer by P K Nag, McGraw-Hill publications				
Reference Books					
1. J P Ho	lman, "Heat Transfer" 9 th edition, Tata McGraw Hill Publications, New	Delhi (2004)			
2. S. P. S	ukhatme, "A Textbook on Heat Transfer", 4 th ed, Universities Press (Inc	lia), 2005			
3. D. Q. 1	3. D. Q. Kern, "Process Heat Transfer", 11 th ed., Tata McGraw Hill Publication, New Delhi				
4. Bird R.B., Stewart W.E., Lightfoot E.N. "Transport phenomena" 2ed., Wiley Publications, 2002					
5. Yunus	5. Yunus A. Cengel "Heat and Mass Transfer" 3 rd ed., Tata McGraw Hill Publications, New Delhi				
(2007)					

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.
- After performing the experiment students will check their readings, calculations from the teacher.
- After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Nashik

(Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Chemical Engineering

Pattern 2022 Semester: IV

CHE222019: Mechanical Operations Lab

	CHEZ	22019. Mechanical Oper	Lauviis Lau	
Teaching	Scheme:	Credit Scheme:	Examination Schem	e:
Practical	: 02 hrs/week	01	Teamwork: 25Marks Practical: 25 Marks	
Physics at	site Courses, if any: -C	Courses of Engineering	Mathematics, Enginee	ering Mechanics,
	bjectives: b study properties of solids,	separation and size reduc	ction of solids	
• To	o understand fluid solid sep o study mixing, agitation an	aration using sedimentati		on.
Course C	Outcomes: On completion of		l be able to-	
		Course Outcomes		Bloom's Level
CO1	Evaluate the separation methods for solid & fluids.		3-Apply	
CO2	Apply the principles of size reduction equipments for solids.		3-Apply	
CO3	Gain the knowledge on mixing principles for solid-solid / solid-liquid mixing.		2-Understand	
CO4	Evaluate the filter medium & specific cake resistance.		3-Apply	
CO5	Understand the various solid transportation techniques.		2- Understand	
	Li	st of Laboratory Experi	iments	
Sr. No.	La	aboratory Experiments		CO Mapped
1	To determine effectiveness of given set of standard screen		C01	
2	To determine energy consumption and crushing law constants for jaw crusher		CO1, CO2	
3	To determine Critical speed of Ball mill & Average particle size of the product obtained in ball mill		CO1, CO2	
4	To determine mixing Inde	x in Sigma Mixer		CO3
5	To find efficiency of cyclo	one separator.		CO1

(To determine filter medium resistance and specific cake resistance by	CO4	
6	using Plate & frame filter Press		
7	To determine area of batch thickener by conducting batch sedimentation	CO2	
7	test.		
8	To determine separation efficiency by using magnetic separator.	CO1, CO4	
9	To study various conveyor systems.		
	Text Books		
1.	1. R.S. Hiremath and A.P. Kulkarni, Unit operation in Chemical Engineering, Everest publication.		
2.	Kiran D. Patil, Mechanical operations: Fundamental Principles and A publication.	pplication, Nirali	
	Reference Books		
1	McCabe W. L. & Smith J. C. "Unit Operations in Chemical Engineerin	ng". McGraw Hill	
	Publications.		
2.	Coulson J. M. and Richardson J. F. "Chemical Engineering, Vol. 2".		
3.	3. Badger W. L and Banchero J.T. "Introduction to Chemical Engineering", McGraw Hill		
	Publications.		

Guidelines for Laboratory Conduction

- Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.
- Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.
- Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.
- After performing the experiment students will check their readings, calculations from the teacher.
- After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Nashik

S. Y. B. Tech. Chemical Engineering				
]	Pattern 2022 Semester:	: IV	
CHE222020: Project Based Learning				
Teaching	eaching Scheme: Credit Scheme: Examination Scheme:			:
Theory :02 hrs/week		01	Continuous Comprehensive TW: 25 Marks	
Prerequis	ite Courses, if any: - Physic	cs, Chemistry, Mathemat	ics, Material balance, an	nd Energy balance.
pro • To • To • To self	bjectives: emphasize long-term aut oblems that need research. integrate knowledge and sk integrate knowledge and sk improve teamwork, prepar f-criticism, guard against s owledge.	ills from various areas th ills from various areas th e students for a social e	rough more complex prough more complex provide the provident provi	oblem solving. oblem solving. f-evaluation and
Course Outcomes: On completion of the course, students will be able to–				
	Course Outcomes		Bloom's Level	
CO1	Increase their capacity for	learning through shared c	cognition.	2-Understand
CO2	Draw on lessons from several disciplines and apply them in a practical way.		3-Apply	
CO3	Learn by performing, and PBL will promote long-term retention of autorial.			
CO4	Replicate a skill, as well as improve teachers' and students' attitudes towards learning. 2-Understand			
CO5	Identify the situation and take necessary decisions as a leader.2-Understand			
COURSE CONTENTS				
Unit I	Selection of the re	elevant problem	(08hrs)	CO1
A problem can be theoretical, practical, social, technical, symbolic, cultural and/or scientific and grows out of students' wondering within different disciplines and professional environments.				
Unit II	Literature	Review	(08hrs)	CO2

Based on	the selected problem need to know the basic inform	nation about previous w	orks knowledge.
Therefore	, detailed literature study should be conducted using	scientific articles.	
Unit III	Experimentation and Methodology(08hrs)CO3		CO3
Projects v	vary greatly in the depth of the questions explored	l, the clarity of the lea	arning goals, the
content ar	nd structure of the experiment activities like selection	of raw materials and m	nethodology etc.
Unit IV	Results and Discussion	(08hrs) CO4	
	chnology in meaningful ways to help them investigation	ate, collaborate, analyze	e, synthesize and
present th	eir learning information and experimental data.		
Unit V	Project Completion (08hrs)		CO5
Activities	may include- solving real life problem, investigation	n/study and writing rep	orts of in depth
study, fiel	d work, presentation etc.		
	Text Books		
1. R	esearch Methodology: Methods and Techniques, N	ew Age International I	Publications, C.R.
	othari and Gaurav Garg		
2. Pe	erry's Chemical Engineers' Handbook, by Don W. Gr	een, Marylee Z. Southa	ırd,
	Reference Books		
	A. Coulson, J.F. Richardson, with J.R. Backhurst		son, Richardson
	Chemical Engineering, Volume-1", 6th ed., Butterwo		
2. Coulson J. M. and Richardson J.F. "Chemical Engineering Vol. 2", Pergamon Press.			
	Coulson J. M. and Richardson J.F. "Chemical Engine	ering Vol. 6", Pergamo	n Press.
4. (Dutlines of Chemical Technology, Dryden		

Reco	Recommended parameters for assessment, evaluation and weightage of the course		
Sr. No.	Components for Continuous Comprehensive Evaluation Marks All		
1	Selection of the relevant problem	05	
2	Literature Review	05	
3	Experimentation and Methodology	05	
4	Results and Discussion	05	
5	Project Completion	05	
	Total	25	

Guidelines for Laboratory Conduction		
 Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant. After performing the experiment students will check their readings, calculations from the teacher. 		
• After checking they have to write the conclusion of the final result.		
Guidelines for Student's Lab Journal		
Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs,		
calculations, conclusion and questions, if any.		
Guidelines for Teamwork Assessment		
 Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks. 		